Skip to main content
Log in

Stationary non-equilibrium states of infinite harmonic systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the existence, properties and approach to stationary non-equilibrium states of infinite harmonic crystals. For classical systems these stationary states are, like the Gibbs states, Gaussian measures on the phase space of the infinite system (analogues results are true for quantum systems). Their ergodic properties are the same as those of the equilibrium states: e.g. for ordered periodic crystals they are Bernoulli. Unlike the equilibrium states however they are not “stable” towards perturbations in the potential.

We are particularly concerned here with states in which there is a non-vanishing steady heat flux passing through “every point” of the infinite system. Such “superheat-conducting” states are of course only possible in systems in which Fourier's law does not hold: the perfect harmonic crystal being an example of such a system. For a one dimensional system, we find such states (explicitely) as limits, whent→∞, of time evolved initial states μ i in which the “left” and “right” parts of the infinite crystal are in “equilibrium” at different temperatures, β L L ≠β −1 R , and the “middle” part is in an arbitrary state. We also investigate the limit of these stationary (t→∞) states as the coupling strength λ between the “system” and the “reservoirs” goes to zero. In this limit we obtain a product state, where the reservoirs are in equilibrium at temperatures β −1 L and β −1 R and the system is in the unique stationary state of the reduced dynamics in the weak coupling limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peierls, R.E.: Quantum theory of solids, Sections 2.4.–2.7. Oxford: University Press 1956

    Google Scholar 

  2. Ashcroft, N.W., Mermin, N.D.: Solid state physics, Chapter 25. New York-London: Holt, Rinehart, and Winston 1976

    Google Scholar 

  3. Rieder, Z., Lebowitz, J.L., Lieb, E.: J. Math. Phys.8, 1073 (1967)

    Google Scholar 

  4. Casher, A., Lebowitz, J.L.: J. Math. Phys.12, 1701 (1971)

    Google Scholar 

  5. O'Connor, A.J., Lebowitz, J.L.: J. Math. Phys.15, 692 (1974)

    Google Scholar 

  6. Nakazawa, H.: Prog. Theor. Phys.39, 236 (1968)

    Google Scholar 

  7. Bolsterli, M., Rich, M., Visscher, W.M.: Phys. Rev. A1, 1086 (1970)

    Google Scholar 

  8. Visscher, W.M.: In: Methods in computational physics. New York: Academic Press 1976

    Google Scholar 

  9. Matsuda, H., Ishii, K.: Supl. Prog. Theor. Phys.45, 56 (1970)

    Google Scholar 

  10. Papanicolaou, G.C.: Heat conduction in a one-dimensional random lattice. Preprint 1976

  11. Rubin, R.J., Greer, W.L.: J. Math. Phys.12, 1686 (1971)

    Google Scholar 

  12. Klein, G., Prigogine, I.: Physica19, 74, 89, 1053 (1953)

    Google Scholar 

  13. Brout, R., Prigogine, I.: Physica22, 621 (1956)

    Google Scholar 

  14. Hemmer, P.C.: Danymic and stochastic types of motion in the linear chain. Det. Fysiske Seminar i Trondheim, No. 2 (1959)

  15. Lanford III, O.E., Lebowitz, J.L.: Time evolution and ergodic properties of harmonic systems. In: Lecture Notes in Physics, Vol. 38, pp. 144–177. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  16. Titulaer, U.M.: Physica70, 257, 276, 456, (1973)

    Google Scholar 

  17. Hemmen, J.L. van: Dynamics and ergodicity of the infinite harmonic crystal. Thesis, University of Groningen, 1976

  18. Lanford III, O.E.: Acta Physica Austr. Suppl.X, 589 (1973)

    Google Scholar 

  19. Goldstein, S., Lebowitz, J.L., Aizenman, M.: In: Dynamical systems — theory and applications. Lecture Notes in Physics, Vol. 38. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  20. Robinson, D., Lanford III, O.E.: Commun. math. Phys.24, 193 (1972)

    Google Scholar 

  21. Goldstein, S., Lebowitz, J.L.: Commun. math. Phys.37, 1 (1974)

    Google Scholar 

  22. Goldstein, S.: Thesis, Yeshiva University 1974

  23. Maradudin, A.A., Montroll, E.W., Weiss, G.H.: Theory of lattice dynamics in the harmonic approximation. New York: Academic Press 1963

    Google Scholar 

  24. Minlos, R.A.: Trudy. Moskov. Obsc.8, 497 (1959) = Selected transl. in math. stat. and prob.3, 291 (1963)

    Google Scholar 

  25. Kato, T.: Pertubation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966

    Google Scholar 

  26. Ornstein, D.S.: Ergodic theory, randomness, and dynamical systems. New Haven: Yale University Press 1974

    Google Scholar 

  27. Pulvirenti, M.: Stability, equilibrium and KMS for infinite classical systems. Preprint 1976

  28. Haag, R., Kastler, D., Trych-Pohlmeyer, E.: Commun. math. Phys.38, 173 (1974)

    Google Scholar 

  29. Aizenman, M., Gallavotti, G., Goldstein, S., Lebowitz, J.L.: Commun. math. Phys.48, 1 (1976)

    Google Scholar 

  30. Davies, E.B.: Commun math. Phys.33, 171 (1973); J. Math. Phys.15, 2036 (1974)

    Google Scholar 

  31. Pulè, J.: Commun. math. Phys.38, 241 (1974)

    Google Scholar 

  32. Davies, E.B.: Commun. math. Phys.39, 91 (1974)

    Google Scholar 

  33. Davies, E.B.: Math. Ann.219, 147 (1976); Ann. Inst. H. Poinc.11, 265 (1975)

    Google Scholar 

  34. Haake, F.: Statistical treatment of open systems by generalized master equations. Springer tracts in modern physics, Vol. 66. Berlin-Heidelberg-New York: Springer 1966

    Google Scholar 

  35. Narnhofer, H.: Acta Phys. Austr.31, 349 (1970),36, 217 (1972)

    Google Scholar 

  36. Hemmen, J.L. van, Vertogen, G.: Physica81 A, 391 (1975)

    Google Scholar 

  37. See for example Jackson, E.A.: Nonlinearity and irreversibility in lattice dynamics. University of Illinois. Preprint (PL)-76-g

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Glimm

On leave of absence from the Fachbereich Physik der Universität München. Work supported by a Max Kade Foundation Fellowship

Research supported in part by NSF Grant MPS75-20638

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spohn, H., Lebowitz, J.L. Stationary non-equilibrium states of infinite harmonic systems. Commun.Math. Phys. 54, 97–120 (1977). https://doi.org/10.1007/BF01614132

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01614132

Keywords

Navigation