Skip to main content
Log in

Critical Correlation Functions for the 4-Dimensional Weakly Self-Avoiding Walk and n-Component \({|\varphi|^4}\) Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We extend and apply a rigorous renormalisation group method to study critical correlation functions, on the 4-dimensional lattice \({{{\mathbb{Z}}}^{4}}\), for the weakly coupled n-component \({|\varphi|^{4}}\) spin model for all \({n \ge 1}\), and for the continuous-time weakly self-avoiding walk. For the \({|\varphi|^{4}}\) model, we prove that the critical two-point function has |x|−2 (Gaussian) decay asymptotically, for \({n \ge 1}\). We also determine the asymptotic decay of the critical correlations of the squares of components of \({\varphi}\), including the logarithmic corrections to Gaussian scaling, for \({n \ge 1}\). The above extends previously known results for n = 1 to all \({n \ge 1}\), and also observes new phenomena for n > 1, all with a new method of proof. For the continuous-time weakly self-avoiding walk, we determine the decay of the critical generating function for the “watermelon” network consisting of p weakly mutually- and self-avoiding walks, for all \({p \ge 1}\), including the logarithmic corrections. This extends a previously known result for p = 1, for which there is no logarithmic correction, to a much more general setting. In addition, for both models, we study the approach to the critical point and prove the existence of logarithmic corrections to scaling for certain correlation functions. Our method gives a rigorous analysis of the weakly self-avoiding walk as the n = 0 case of the \({|\varphi|^{4}}\) model, and provides a unified treatment of both models, and of all the above results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdesselam, A., Chandra, A., Guadagni, G.: Rigorous quantum field theory functional integrals over the p-adics I: anomalous dimensions (2013). arXiv:1302.5971

  2. Aharony A.: Dependence of universal critical behaviour on symmetry and range of interaction. In: Domb, C., Green, M.S. (eds.) Phase Transitions and Critical Phenomena, vol. 6, pp. 357–424. Academic Press, London (1976)

    Google Scholar 

  3. Ahlers G., Kornblit A., Guggenheim H.J.: Logarithmic corrections to the Landau specific heat near the Curie temperature of the dipolar Ising ferromagnet LiTbF4. Phys. Rev. Lett. 34, 1227–1230 (1975)

    Article  ADS  Google Scholar 

  4. Aizenman M.: Geometric analysis of \({\varphi^{4}}\) fields and Ising models, parts I and II. Commun. Math. Phys. 86, 1–48 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Aizenman M.: The intersection of Brownian paths as a case study of a renormalization group method for quantum field theory. Commun. Math. Phys. 97, 91–110 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Aizenman M., Duminil-Copin H., Sidoravicius V.: Random currents and continuity of Ising model’s spontaneous magnetization. Commun. Math. Phys. 334, 719–742 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Aizenman M., Fernández R.: On the critical behavior of the magnetization in high dimensional Ising models. J. Stat. Phys. 44, 393–454 (1986)

    Article  ADS  MATH  Google Scholar 

  8. Aizenman M., Graham R.: On the renormalized coupling constant and the susceptibility in \({\phi_{4}^{4}}\) field theory and the Ising model in four dimensions. Nucl. Phys. B 225(FS9), 261–288 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  9. Aragão de Carvalho C., Caracciolo S., Fröhlich J.: Polymers and \({g|\phi|^{4}}\) theory in four dimensions. Nucl. Phys. B 215(FS7), 209–248 (1983)

    Article  ADS  Google Scholar 

  10. Bałaban, T.: A low temperature expansion and “spin wave picture” for classical N-vector models. In: Rivasseau, V. (ed.) Constructive Physics Results in Field Theory, Statistical Mechanics and Condensed Matter Physics. Lecture Notes in Physics, vol. 446. Springer, Berlin (1995)

  11. Bałaban T., O’Carroll M.: Low temperature properties for correlation functions in classical N-vector spin models. Commun. Math. Phys. 199, 493–520 (1999)

    Article  ADS  MATH  Google Scholar 

  12. Bauerschmidt R.: A simple method for finite range decomposition of quadratic forms and Gaussian fields. Probab. Theory Relat. Fields 157, 817–845 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bauerschmidt R., Brydges D.C., Slade G.: Scaling limits and critical behaviour of the 4-dimensional n component \({|\varphi|^{4}}\) spin model. J. Stat. Phys 157, 692–742 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bauerschmidt R., Brydges D.C., Slade G.: Critical two-point function of the 4-dimensional weakly self-avoiding walk. Commun. Math. Phys. 338, 169–193 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. Bauerschmidt R., Brydges D.C., Slade G.: Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: a renormalisation group analysis. Commun. Math. Phys. 337, 817–877 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bauerschmidt R., Brydges D.C., Slade G.: A renormalisation group method. III. Perturbative analysis. J. Stat. Phys 159, 492–529 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Bauerschmidt R., Brydges D.C., Slade G.: Structural stability of a dynamical system near a non-hyperbolic fixed point. Ann. Henri Poincaré 16, 1033–1065 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Bovier A., Felder G., Fröhlich J.: On the critical properties of the Edwards and the self-avoiding walk model of polymer chains. Nucl. Phys. B 230(FS10), 119–147 (1984)

    Article  ADS  Google Scholar 

  19. Brézin E., Le Guillou J.C., Zinn-Justin J.: Approach to scaling in renormalized perturbation theory. Phys. Rev. D 8, 2418–2430 (1973)

    Article  ADS  Google Scholar 

  20. Brydges D., Evans S.N., Imbrie J.Z.: Self-avoiding walk on a hierarchical lattice in four dimensions. Ann. Probab. 20, 82–124 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brydges, D.C., Dahlqvist, A., Slade, G.: The strong interaction limit of continuous-time weakly self-avoiding walk. In: Deuschel, J.-D., Gentz, B., König, W., von Renesse, M., Scheutzow, M., Schmock, U. (eds.) Probability in Complex Physical Systems: In Honour of Erwin Bolthausen and Jürgen Gärtner. Proceedings in Mathematics, vol. 11, pp. 275–287. Springer, Berlin (2012)

  22. Brydges D.C., Fröhlich J., Spencer T.: The random walk representation of classical spin systems and correlation inequalities. Commun. Math. Phys. 83, 123–150 (1982)

    Article  ADS  Google Scholar 

  23. Brydges D.C., Guadagni G., Mitter P.K.: Finite range decomposition of Gaussian processes. J. Stat. Phys. 115, 415–449 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Brydges D.C., Imbrie J.Z.: Branched polymers and dimensional reduction. Ann. Math. 158, 1019–1039 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Brydges D.C., Imbrie J.Z.: End-to-end distance from the Green’s function for a hierarchical self-avoiding walk in four dimensions. Commun. Math. Phys. 239, 523–547 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Brydges D.C., Imbrie J.Z.: Green’s function for a hierarchical self-avoiding walk in four dimensions. Commun. Math. Phys. 239, 549–584 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Brydges D.C., Imbrie J.Z., Slade G.: Functional integral representations for self-avoiding walk. Probab. Surv. 6, 34–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Brydges D.C., Slade G.: A renormalisation group method. I. Gaussian integration and normed algebras. J. Stat. Phys. 159, 421–460 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Brydges D.C., Slade G.: A renormalisation group method. II. Approximation by local polynomials. J. Stat. Phys. 159, 461–491 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. Brydges D.C., Slade G.: A renormalisation group method. IV. Stability analysis. J. Stat. Phys. 159, 530–588 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. Brydges D.C., Slade G.: A renormalisation group method. V. A single renormalisation group step. J. Stat. Phys. 159, 589–667 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. Cardy J.: Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  33. Chelkak D., Smirnov S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189, 515–580 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Dimock J., Hurd T.R.: A renormalization group analysis of correlation functions for the dipole gas. J. Stat. Phys. 66, 1277–1318 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Dunlop F., Newman C.M.: Multicomponent field theories and classical rotators. Commun. Math. Phys. 44, 223–235 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  36. Duplantier B.: Polymer chains in four dimensions. Nucl. Phys. B 275(FS17), 319–355 (1986)

    Article  ADS  Google Scholar 

  37. Duplantier B.: Intersections of random walks. A direct renormalization approach. Commun. Math. Phys. 117, 279–329 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Duplantier B.: Statistical mechanics of polymer networks of any topology. J. Stat. Phys. 54, 581–680 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  39. Dynkin E.B.: Markov processes as a tool in field theory. J. Funct. Anal. 50, 167–187 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. Falco, P.: Critical exponents of the two dimensional Coulomb gas at the Berezinskii–Kosterlitz–Thouless transition (2013). arXiv:1311.2237

  41. Felder G., Fröhlich J.: Intersection probabilities of simple random walks: a renormalization group approach. Commun. Math. Phys. 97, 111–124 (1985)

    Article  ADS  MATH  Google Scholar 

  42. Feldman J., Magnen J., Rivasseau V., Sénéor R.: Construction and Borel summability of infrared \({\Phi^{4}_{4}}\) by a phase space expansion. Commun. Math. Phys. 109, 437–480 (1987)

    Article  ADS  Google Scholar 

  43. Fernández R., Fröhlich J., Sokal A.D.: Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  44. Fröhlich J.: On the triviality of \({\varphi_{d}^{4}}\) theories and the approach to the critical point in \({d \geq 4}\) dimensions. Nucl. Phys. B 200(FS4), 281–296 (1982)

    Article  ADS  Google Scholar 

  45. Gawȩdzki K., Kupiainen A.: Massless lattice \({\varphi^{4}_{4}}\) theory: rigorous control of a renormalizable asymptotically free model. Commun. Math. Phys. 99, 199–252 (1985)

    MathSciNet  Google Scholar 

  46. Gawȩdzki, K., Kupiainen, A.: Asymptotic freedom beyond perturbation theory. In: Osterwalder, K., Stora, R., (eds.) Critical Phenomena, Random Systems, Gauge Theories, Amsterdam, (1986). [North-Holland. Les Houches (1984)]

  47. de Gennes P.G.: Exponents for the excluded volume problem as derived by the Wilson method. Phys. Lett. A 38, 339–340 (1972)

    Article  ADS  Google Scholar 

  48. Glimm J., Jaffe A.: Quantum Physics, A Functional Integral Point of View, 2nd edn. Springer, Berlin (1987)

    Google Scholar 

  49. Grimmett G.R., Manolescu I.: Bond percolation on isoradial graphs: criticality and universality. Probab. Theory Relat. Fields 159, 273–327 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Hara T.: A rigorous control of logarithmic corrections in four dimensional \({\varphi^{4}}\) spin systems. I. Trajectory of effective Hamiltonians. J. Stat. Phys. 47, 57–98 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  51. Hara T., Hattori T., Watanabe H.: Trivitality of hierarchical Ising model in four dimensions. Commun. Math. Phys. 220, 13–40 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Hara T., Slade G.: Self-avoiding walk in five or more dimensions. I. The critical behaviour. Commun. Math. Phys. 147, 101–136 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Hara T., Tasaki H.: A rigorous control of logarithmic corrections in four dimensional \({\varphi^{4}}\) spin systems. II. Critical behaviour of susceptibility and correlation length. J. Stat. Phys. 47, 99–121 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  54. Holmes M., Járai A.A., Sakai A., Slade G.: High-dimensional graphical networks of self-avoiding walks. Canad. J. Math. 56, 77–114 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Iagolnitzer D., Magnen J.: Polymers in a weak random potential in dimension four: rigorous renormalization group analysis. Commun. Math. Phys. 162, 85–121 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  56. Kenyon R., Winkler P.: Branched polymers. Am. Math. Mon. 116, 612–628 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Larkin, A.I., Khmel’Nitskiĭ, D.E.: Phase transition in uniaxial ferroelectrics. Sov. Phys. JETP 29, 1123–1128 (1969). [English translation of Zh. Eksp. Teor. Fiz. 56, 2087–2098 (1969)]

  58. Lawler G.F.: Intersections of random walks in four dimensions. II. Commun. Math. Phys. 97, 583–594 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Lawler G.F.: Intersections of Random Walks. Birkhäuser, Boston (1991)

    Book  MATH  Google Scholar 

  60. Lawler G.F.: Escape probabilities for slowly recurrent sets. Probab. Theory Relat. Fields 94, 91–117 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  61. Le Jan Y.: On the Fock space representation of functionals of the occupation field and their renormalization. J. Funct. Anal. 80, 88–108 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  62. Madras N., Slade G.: The Self-Avoiding Walk. Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  63. McKane A.J.: Reformulation of \({n \to 0}\) models using anticommuting scalar fields. Phys. Lett. A 76, 22–24 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  64. Mitter P.K., Scoppola B.: The global renormalization group trajectory in a critical supersymmetric field theory on the lattice \({{{\mathbb{Z}}}^{3}}\). J. Stat. Phys. 133, 921–1011 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Parisi G., Sourlas N.: Self-avoiding walk and supersymmetry. J. Phys. Lett. 41, L403–L406 (1980)

    Article  Google Scholar 

  66. Park Y.M.: Direct estimates on intersection probabilities of random walks. J. Stat. Phys. 57, 319–331 (1989)

    Article  ADS  MATH  Google Scholar 

  67. Sakai A.: Lace expansion for the Ising model. Commun. Math. Phys. 272, 283–344 (2007)

    Article  ADS  MATH  Google Scholar 

  68. Sakai A.: Application of the lace expansion to the \({\varphi^4}\) model. Commun. Math. Phys. 336, 619–648 (2015)

    Article  ADS  MATH  Google Scholar 

  69. Simon B., Griffiths R.B.: The \({(\phi^4)_{2}}\) field theory as a classical Ising model. Commun. Math. Phys. 33, 145–164 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  70. Slade, G.: The Lace Expansion and its Applications. Springer, Berlin (2006). (Lecture Notes in Mathematics, vol. 1879. Ecole d’Eté de Probabilités de Saint-Flour XXXIV-2004)

  71. Smirnov S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Math. Acad. Sci. Paris 333, 239–244 (2001)

    Article  ADS  MATH  Google Scholar 

  72. Smirnov, S.: Critical percolation in the plane. I. Conformal invariance and Cardy’s formula. II. Continuum scaling limit (2001). arXiv:0909.4499

  73. Smirnov S., Werner W.: Critical exponents for two-dimensional percolation. Math. Res. Lett. 8, 729–744 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  74. Symanzik, K.: Euclidean quantum field theory. In: Jost, R. Local Quantum Field Theory, Academic Press, New York (1969)

  75. Wegner F.J., Riedel E.K.: Logarithmic corrections to the molecular-field behavior of critical and tricritical systems. Phys. Rev. B 7, 248–256 (1973)

    Article  ADS  Google Scholar 

  76. Wilson K.G., Kogut J.: The renormalization group and the ε expansion. Phys. Rep. 12, 75–200 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Tomberg.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slade, G., Tomberg, A. Critical Correlation Functions for the 4-Dimensional Weakly Self-Avoiding Walk and n-Component \({|\varphi|^4}\) Model. Commun. Math. Phys. 342, 675–737 (2016). https://doi.org/10.1007/s00220-015-2488-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2488-4

Keywords

Navigation