Skip to main content
Log in

A Renormalisation Group Method. IV. Stability Analysis

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper is the fourth in a series devoted to the development of a rigorous renormalisation group method for lattice field theories involving boson fields, fermion fields, or both. The third paper in the series presents a perturbative analysis of a supersymmetric field theory which represents the continuous-time weakly self-avoiding walk on \({{{\mathbb Z}}^d }\). We now present an analysis of the relevant interaction functional of the supersymmetric field theory, which permits a nonperturbative analysis to be carried out in the critical dimension \(d = 4\). The results in this paper include: proof of stability of the interaction, estimates which enable control of Gaussian expectations involving both boson and fermion fields, estimates which bound the errors in the perturbative analysis, and a crucial contraction estimate to handle irrelevant directions in the flow of the renormalisation group. These results are essential for the analysis of the general renormalisation group step in the fifth paper in the series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abdesselam, A.: A complete renormalization group trajectory between two fixed points. Commun. Math. Phys. 276, 727–772 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bałaban, T.: (Higgs)\(_{2,3}\) quantum fields in a finite volume. Commun. Math. Phys. 85, 603–636 (1982)

    Article  ADS  Google Scholar 

  3. Bauerschmidt, R.: A simple method for finite range decomposition of quadratic forms and Gaussian fields. Probab. Theory Relat. Fields 157, 817–845 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bauerschmidt, R., Brydges, D.C., Slade, G.: Critical two-point function of the 4-dimensional weakly self-avoiding walk. Commun. Math. Phys. (to appear). arXiv:1403.7268

  5. Bauerschmidt, R., Brydges, D.C., Slade, G.: Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: a renormalisation group analysis. Commun. Math. Phys. (to appear). arXiv:1403.7422

  6. Bauerschmidt, R., Brydges, D.C., Slade, G.: A renormalisation group method. III. Perturbative analysis. J. Stat. Phys. (to appear). doi:10.1007/s10955-014-1165-x

  7. Bauerschmidt, R., Brydges, D.C., Slade, G.: Structural stability of a dynamical system near a non-hyperbolic fixed point. Annales Henri Poincaré (to appear). doi:10.1007/s00023-014-0338-0

  8. Bauerschmidt, R., Brydges, D.C., Slade, G.: Scaling limits and critical behaviour of the \(4\)-dimensional \(n\)-component \(|\varphi |^4\) spin model. J. Stat. Phys. 157, 692–742 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Benfatto, G., Gallavotti, G.: Renormalization Group. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  10. Brydges, D., Dimock, J., Hurd, T.R.: The short distance behavior of \((\varphi ^4)_3\). Commun. Math. Phys. 172, 143–146 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Brydges, D.C., Imbrie, J.Z., Slade, G.: Functional integral representations for self-avoiding walk. Probab. Surv. 6, 34–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brydges, D.C., Slade, G.: A renormalisation group method. I. Gaussian integration and normed algebras. J. Stat. Phys. (to appear). doi:10.1007/s10955-014-1163-z

  13. Brydges, D.C., Slade, G.: A renormalisation group method. II. Approximation by local polynomials. J. Stat. Phys. (to appear). doi:10.1007/s10955-014-1164-y

  14. Brydges, D.C., Slade, G.: A renormalisation group method V. A single renormalisation group step. J. Stat. Phys. (to appear). doi:10.1007/s10955-014-1167-8

  15. Dimock, J.: Infinite volume limit for the dipole gas. J. Stat. Phys. 135, 393–427 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Dimock, J.: The renormalization group according to Bałaban I. Small fields. Rev. Math. Phys. 25, 1330010 (2013)

    Article  MathSciNet  Google Scholar 

  17. Dimock, J., Hurd, T.R.: A renormalization group analysis of correlation functions for the dipole gas. J. Stat. Phys. 66, 1277–1318 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Dimock, J., Hurd, T.R.: Sine-Gordon revisted. Annales Henri Poincaré 1, 499–541 (2000)

  19. Falco, P.: Kosterlitz–Thouless transition line for the two dimensional Coulomb gas. Commun. Math. Phys. 312, 559–609 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Falco, P.: Critical exponents of the two dimensional Coulomb gas at the Berezinskii–Kosterlitz–Thouless transition. (2013). arXiv:1311.2237

  21. Federbush, P.: Quantum field theory in ninety minutes. Bull. Am. Math. Soc. 17, 30–103 (1987)

    Article  MathSciNet  Google Scholar 

  22. Gawȩdzki, K., Kupiainen, A.: Massless lattice \(\varphi ^4_4\) theory: rigorous control of a renormalizable asymptotically free model. Commun. Math. Phys. 99, 199–252 (1985)

    Google Scholar 

  23. Gawȩdzki, K., Kupiainen, A.: Asymptotic freedom beyond perturbation theory. In Osterwalder, K., Stora, R. (eds.), Critical Phenomena, Random Systems, Gauge Theories, Amsterdam, (1986). North-Holland, Les Houches (1984)

  24. Mitter, P.K., Scoppola, B.: The global renormalization group trajectory in a critical supersymmetric field theory on the lattice \({\mathbb{Z}}^3\). J. Stat. Phys. 133, 921–1011 (2008)

  25. Rivasseau, V.: From Perturbative to Constructive Renormalization. Princeton University Press, Princeton (1991)

    Book  Google Scholar 

  26. Salmhofer, M.: Renormalization: An Introduction. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  27. Slade, G., Tomberg, A.: Critical correlation functions for the \(4\)-dimensional weakly self-avoiding walk and \(n\)-component \(|\varphi |^4\) model. (2014). arXiv:1412.2668

Download references

Acknowledgments

The work of both authors was supported in part by NSERC of Canada. DB gratefully acknowledges the support and hospitality of the Institute for Advanced Study at Princeton and of Eurandom during part of this work. GS gratefully acknowledges the support and hospitality of the Institut Henri Poincaré, and of the Mathematical Institute of Leiden University, where part of this work was done. We thank Roland Bauerschmidt for numerous helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Brydges.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brydges, D.C., Slade, G. A Renormalisation Group Method. IV. Stability Analysis. J Stat Phys 159, 530–588 (2015). https://doi.org/10.1007/s10955-014-1166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1166-9

Keywords

Mathematics Subject Classification

Navigation