Skip to main content
Log in

Critical Two-Point Function for Long-Range Models with Power-Law Couplings: The Marginal Case for \({d\ge d_{\rm c}}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Consider the long-range models on \({\mathbb{Z}^d}\) of random walk, self-avoiding walk, percolation and the Ising model, whose translation-invariant 1-step distribution/coupling coefficient decays as \({|x|^{-d-\alpha}}\) for some \({\alpha > 0}\) . In the previous work (Chen and Sakai in Ann Probab 43:639–681, 2015), we have shown in a unified fashion for all \({\alpha\ne2}\) that, assuming a bound on the “derivative” of the \({n}\) -step distribution (the compound-zeta distribution satisfies this assumed bound), the critical two-point function \({G_{p_{\rm c}}(x)}\) decays as \({|x|^{\alpha\wedge2-d}}\) above the upper-critical dimension \({d_{\rm c}\equiv(\alpha\wedge2)m}\) , where m = 2 for self-avoiding walk and the Ising model and m = 3 for percolation. In this paper, we show in a much simpler way, without assuming a bound on the derivative of the n-step distribution, that \({G_{p_{\rm c}}(x)}\) for the marginal case α = 2 decays as \({|x|^{2-d}/\log|x|}\) whenever d ≥ dc (with a large spread-out parameter L). This solves the conjecture in Chen and Sakai (2015), extended all the way down to d = dc, and confirms a part of predictions in physics (Brezin et al. in J Stat Phys 157:855–868, 2014). The proof is based on the lace expansion and new convolution bounds on power functions with log corrections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M.: Geometric analysis of \({\phi^4}\) fields and Ising models. Commun. Math. Phys. 86, 1–48 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  2. Aizenman M., Barsky D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108, 489–526 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  3. Aizenman M., Barsky D.J., Fernández R.: The phase transition in a general class of Ising-type models is sharp. J. Stat. Phys. 47, 343–374 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  4. Aizenman M., Duminil-Copin H., Sidoravicius V.: Random currents and continuity of Ising model’s spontaneous magnetization. Commun. Math. Phys. 334, 719–742 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. Aizenman M., Fernández R.: On the critical behavior of the magnetization in high-dimensional Ising models. J. Stat. Phys. 44, 393–454 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  6. Aizenman M., Newman C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36, 107–143 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  7. Angelini MC, Parisi G, Ricci-Tersenghi F: Relation between short-range and long-range Ising models. Phys. Rev. E 89, 062120 (2014)

    Article  ADS  Google Scholar 

  8. Brezin E., Parisi G., Ricci-Tersenghi F.: The crossover region between long-range and short-range interactions for the critical exponents. J. Stat. Phys. 157, 855–868 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. Brydges D., Spencer T.: Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys. 97, 125–148 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chen L.-C., Sakai A.: Critical behavior and the limit distribution for long-range oriented percolation. I. Probab. Theory Relat. Fields 142, 151–188 (2008)

    Article  MathSciNet  Google Scholar 

  11. Chen L.-C., Sakai A.: Critical behavior and the limit distribution for long-range oriented percolation. II: spatial correlation. Probab. Theory Relat. Fields 145, 435–458 (2009)

    Article  MathSciNet  Google Scholar 

  12. Chen L.-C., Sakai A.: Asymptotic behavior of the gyration radius for long-range self-avoiding walk and long-range oriented percolation. Ann. Probab. 39, 507–548 (2011)

    Article  MathSciNet  Google Scholar 

  13. Chen L.-C., Sakai A.: Critical two-point functions for long-range statistical-mechanical models in high dimensions. Ann. Probab. 43, 639–681 (2015)

    Article  MathSciNet  Google Scholar 

  14. Duminil-Copin H., Tassion V.: A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. Commun. Math. Phys. 343, 725–745 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hara T.: Decay of correlations in nearest-neighbour self-avoiding walk, percolation, lattice trees and animals. Ann. Probab. 36, 530–593 (2008)

    Article  MathSciNet  Google Scholar 

  16. Hara T., Hofstad R., Slade G.: Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31, 349–408 (2003)

    Article  MathSciNet  Google Scholar 

  17. Hara T., Slade G.: Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys. 128, 333–391 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  18. Hara T., Slade G.: On the upper critical dimension of lattice trees and lattice animals. J. Stat. Phys. 59, 1469–1510 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  19. Heydenreich M., van derHofstad R., Sakai A.: Mean-field behavior for long- and finite-range Ising model, percolation and self-avoiding walk. J. Stat. Phys. 132, 1001–1049 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. Lebowitz J.: GHS and other inequalities. Commun. Math. Phys. 35, 87–92 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  21. Lohmann M., Slade G., Wallace B.C.: Critical two-point function for long-range O(n) models below the upper critical dimension. J. Stat. Phys. 169, 1132–1161 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. Madras N., Slade G.: The Self-Avoiding Walk. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  23. Menshikov M.V.: Coincidence of critical points in percolation problems. Soviet Math. Doklady 33, 856–859 (1986)

    MATH  Google Scholar 

  24. Nguyen B.G., Yang W-S.: Triangle condition for oriented percolation in high dimensions. Ann. Probab. 21, 1809–1844 (1993)

    Article  MathSciNet  Google Scholar 

  25. Sakai A.: Mean-field critical behavior for the contact process. J. Stat. Phys. 104, 111–143 (2001)

    Article  MathSciNet  Google Scholar 

  26. Sakai A.: Lace expansion for the Ising model. Commun. Math. Phys. 272, 283–344 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. Sakai A.: Application of the lace expansion to the \({\varphi^4}\) model. Commun. Math. Phys. 336, 619–648 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work of AS was supported by JSPS KAKENHI Grant Number 18K03406. The work of LCC was supported by the Grant MOST 107-2115-M-004-004-MY2. We are grateful to the Institute of Mathematics and Mathematics Research Promotion Center (MRPC) of Academia Sinica, as well as the National Center for Theoretical Sciences (NCTS) at National Taiwan University, for providing us with comfortable working environment in multiple occasions. We would also like to thank the referees for their comments to improve presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Sakai.

Additional information

Communicated by H. Spohn

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LC., Sakai, A. Critical Two-Point Function for Long-Range Models with Power-Law Couplings: The Marginal Case for \({d\ge d_{\rm c}}\). Commun. Math. Phys. 372, 543–572 (2019). https://doi.org/10.1007/s00220-019-03385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03385-9

Navigation