Skip to main content
Log in

The Global Renormalization Group Trajectory in a Critical Supersymmetric Field Theory on the Lattice ℤ3

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider an Euclidean supersymmetric field theory in ℤ3 given by a supersymmetric Φ4 perturbation of an underlying massless Gaussian measure on scalar bosonic and Grassmann fields with covariance the Green’s function of a (stable) Lévy random walk in ℤ3. The Green’s function depends on the Lévy-Khintchine parameter \(\alpha ={3+\varepsilon \over 2}\) with 0<α<2. For \(\alpha ={3\over 2}\) the Φ4 interaction is marginal. We prove for \(\alpha -{3\over 2}={\varepsilon \over 2}>0\) sufficiently small and initial parameters held in an appropriate domain the existence of a global renormalization group trajectory uniformly bounded on all renormalization group scales and therefore on lattices which become arbitrarily fine. At the same time we establish the existence of the critical (stable) manifold. The interactions are uniformly bounded away from zero on all scales and therefore we are constructing a non-Gaussian supersymmetric field theory on all scales. The interest of this theory comes from the easily established fact that the Green’s function of a (weakly) self-avoiding Lévy walk in ℤ3 is a second moment (two point correlation function) of the supersymmetric measure governing this model. The rigorous control of the critical renormalization group trajectory is a preparation for the study of the critical exponents of the (weakly) self-avoiding Lévy walk in ℤ3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdesselam, A.: A complete renormalization group trajectory between two fixed points. Commun. Math. Phys. 276, 727–772 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Balaban, T.: (Higgs)2,3 quantum fields in a finite volume I. A lower bound. Commun. Math. Phys. 85, 603–626 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  3. Balaban, T.: (Higgs)2,3 quantum fields in a finite volume II. An upper bound. Commun. Math. Phys. 86, 555–594 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  4. Balaban, T.: Renormalization group approach to lattice gauge theories I. Generation of effective actions in a small field approximation and a coupling constant renormalization in four dimensions. Commun. Math. Phys. 109, 249–301 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Bricmont, J., Kupiainen, A., Lefevere, R.: Renormalizing the renormalization group pathologies. Phys. Rep. 348, 5–31 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Brydges, D., Dimock, J., Hurd, T.R.: Estimates on renormalization group transformation. Can. J. Math. 50(4), 756–793 (1998)

    MATH  MathSciNet  Google Scholar 

  7. Brydges, D., Dimock, J., Hurd, T.R.: A non-Gaussian fixed point for φ 4 in 4-ε dimensions. Commun. Math. Phys. 198, 111–156 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Brydges, D., Guadagni, G., Mitter, P.K.: Finite range decomposition of Gaussian processes. J. Stat. Phys. 115, 415–449 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. Brydges, D., Evans, S.N., Imbrie, J.Z.: Self-avoiding walk on a hierarchical lattice in four dimensions. Ann. Probab. 20, 82–124 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brydges, D.C., Imbrie, J.Z.: End-to-end distance from the green’s function for a hierarchical self-avoiding walk in four dimensions. Commun. Math. Phys. 239, 523–547 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Brydges, D.C., Imbrie, J.Z.: Green’s function for a hierarchical self-avoiding walk in four dimensions. Commun. Math. Phys. 239, 549–584 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Brydges, D.C., Mitter, P.K.: On the convergence to the continuum of finite range lattice covariances (in preparation)

  13. Brydges, D.C., Mitter, P.K., Scoppola, B.: Critical (Φ4)3,ε . Commun. Math. Phys. 240, 281–327 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Brydges, D.C., Slade, G.: (in preparation)

  15. Brydges, D., Yau, H.T.: Grad φ perturbations of massless Gaussian fields. Commun. Math. Phys. 129, 351–392 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. Wiley, New York (1968)

    MATH  Google Scholar 

  17. Gawedzki, K., Kupiainen, A.: A rigorous block spin approach to massless field theories. Commun. Math. Phys. 77, 31–64 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gawedzki, K., Kupiainen, A.: A rigorous block spin approach to massless field theories. Ann. Phys. 147, 198 (1980)

    ADS  MathSciNet  Google Scholar 

  19. Gawedzki, K., Kupiainen, A.: Massless (φ) 44 theory: Rigorous control of a renormalizable asymptotically free model. Commun. Math. Phys. 99, 197–252 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  20. Griffiths, R.B.: Nonanalytic behaviour above the critical point in a random Ising ferromagnet. Phys. Rev. Lett. 23, 17–20 (1969)

    Article  ADS  Google Scholar 

  21. Griffiths, R.B., Pearce, P.A.: Position-space renormalization group transformations: some proofs and some problems. Phys. Rev. Lett. 41, 917–920 (1978)

    Article  ADS  Google Scholar 

  22. Griffiths, R.B., Pearce, P.A.: Mathematical properties of position-space renormalization group transformations. J. Stat. Phys. 20, 499–545 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  23. Irwin, M.C.: On the stable manifold theorem. Bull. Lond. Math. Soc. 2, 196–198 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kolmogoroff, A.N., Gnedenko, B.V.: Limit Distributions of Sums of Independant Random Variables. Addison-Wesley, Reading (1954)

    Google Scholar 

  25. McKane, A.J.: Reformulation of n→0 models using supersymmetry. Phys. Lett. A 41, 22–44 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  26. Parisi, G., Sourlas, N.: Self-avoiding walk and supersymmetry. J. Phys. Lett. 41, L403–L406 (1980)

    Article  Google Scholar 

  27. Shub, M.: Global Stability of Dynamical Systems. Springer, New York (1987)

    MATH  Google Scholar 

  28. Wilson, K.G., Kogut, J.: The renormalization group and the ε expansion. Phys. Rep. C 12, 75–200 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Mitter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitter, P.K., Scoppola, B. The Global Renormalization Group Trajectory in a Critical Supersymmetric Field Theory on the Lattice ℤ3 . J Stat Phys 133, 921–1011 (2008). https://doi.org/10.1007/s10955-008-9626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9626-8

Keywords

Navigation