Skip to main content
Log in

A thermophilic α-l-Arabinofuranosidase from Geobacillus vulcani GS90: heterologous expression, biochemical characterization, and its synergistic action in fruit juice enrichment

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

α-l-Arabinofuranosidases with an orchestral action of xylanolytic enzymes degrades the xylan in plant cell wall. In this study, heterologous expression, biochemical characterization, and synergistic action of α-l-Arabinofuranosidase from previously identified.Geobacillus vulcani GS90 (GvAbf) was investigated. The recombinant α-l-Arabinofuranosidase was overexpressed in Escherichia coli BL21 (λDE) and purified via His-tag Ni-affinity and size-exclusion chromatography. Optimum activity of the purified α-l-Arabinofuranosidase was obtained at pH 5 and at 70 °C. The GvAbf was active in a broad pH and temperature ranges; pH 4–9 and 30–90 °C, respectively. In addition, it retained most of its activity after an hour incubation at 70 °C and remained relatively stable at pH 3–6. GvAbf was quite stable against various metal ions. The kinetic parameters of GvAbf was obtained as Vmax and Km; 200 U/mg and 0.2 mM with p-nitrophenyl-α-l-arabinofuranoside and 526 U/mg and 0.1 mM with sugar beet arabinan, respectively. The synergistic action of GvAbf was studied with commercially available xylanase on juice enrichment of apples, grapes, oranges, and peaches. The best juice enrichment in terms of clarity, reducing sugar content, and yield, was achieved with GvAbf and xylanase together compared to treatment with xylanase and GvAbf alone in all fruits. The treatment with GvAbf and xylanase together lead to an increased juice yield by 26.56% (apple), 30.88% (grape), 40.00% (orange) and 32.20% (peach) as well as having a significant effect on juice clarity by an increase of % transmittance 47.26, 25.98, 41.77, and 44.97, respectively. The highest reducing sugar level of fruit juices also obtained with GvAbf and xylanase together compared to treatment with xylanase and GvAbf alone in all types of fruits. GvAbf and xylanase together as simultaneous synergistic manner may have an exciting potential for application in fruit juice processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Taiz L, Zeiger E (2010) Plant physiology, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  2. Kaji A (1984) l-Arabinosidases. Chem Biochem 42:383–394

    CAS  Google Scholar 

  3. Hoffmam ZB, Oliveira LC, Cota J, Alvarez TM, Diogo JA, de Oliveira Neto M, Citadini APS, Leite VBP, Squina FM, Murakami MT, Ruller R (2013) Characterization of a hexameric exo-acting GH51 α-l-Arabinofuranosidase from the mesophilic Bacillus subtilis. Mol Biotechnol 55:260–267

    Article  CAS  PubMed  Google Scholar 

  4. Hashimoto T, Nakata Y (2003) Synergistic degradation of arabinoxylan with alpha-l-Arabinofuranosidase, xylanase and alpha-xylosidase from soy sauce koji mold, Aspergillus oryzae, in high salt condition. J Biosci Bioeng 95:164–169

    Article  CAS  PubMed  Google Scholar 

  5. Raweesri P, Riangrungrojana P, Pinphanichakarn P (2008) α-l-Arabinofuranosidase from Streptomyces sp. PC22: purification, characterization and its synergistic action with xylanolytic enzymes in the degradation of xylan and agricultural residues. Biores Technol 99:8981–8986

    Article  CAS  Google Scholar 

  6. Yang W, Bai Y, Yang P, Luo H, Huang H, Meng K, Shi P, Wang Y, Yao B (2015) A novel bifunctional GH51 exo-α-l-Arabinofuranosidase/endo-xylanase from Alicyclobacillus sp. A4 with significant biomass-degrading capacity. Biotechnol Biofuels 8:1–11

    Article  CAS  Google Scholar 

  7. Park J-M, Jang M-U, Oh GW, Lee E-H, Kang J-H, Song Y-B, Han NS, Kim T-J (2015) Synergistic action modes of arabinan degradation by exo- and endo-arabinosyl hydrolases. J Microbiol Biotechnol 25:227–233

    Article  CAS  PubMed  Google Scholar 

  8. Bouraoui H, Desrousseaux M-L, Ioannou E, Alvira P, Manaï M, Rémond C, Dumon C, Fernandez‑Fuentes N, O’Donohue MJ (2016) The GH51 α-l-Arabinofuranosidase from Paenibacillus sp. THS1 is multifunctional, hydrolyzing main-chain and side-chain glycosidic bonds in heteroxylans. Biotechnol Biofuels 9:1–14

    Article  CAS  Google Scholar 

  9. Aryan A-P, Wilson B, Strauss C-R, Williams P-J (1987) The properties of glycosidases of Vitis vinifera and a comparison of their β-glucosidase activity with that of exogenous enzymes: an assessment of possible applications in enology. Am J Enol Vitic 38:182–188

    CAS  Google Scholar 

  10. Saha B (2000) Alpha-l-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18:403–423

    Article  CAS  PubMed  Google Scholar 

  11. Campbell GL, Bedford MR (1992) Enzyme applications for monogastric feeds: a review. Can J Anim Sci 72:449–466

    Article  CAS  Google Scholar 

  12. Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching from an idea to the industry. FEMS Microbiol Rev 13:335–350

    Article  CAS  Google Scholar 

  13. Numan M, Bhosle N (2006) Alpha-l-Arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 33:247–260

    Article  CAS  PubMed  Google Scholar 

  14. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  15. Nawel B, Saida B, Estelle C, Hakima H, Duchironb F (2011) Production and partial characterization of xylanase produced by Jonesia denitrificans isolated in Algerian soil. Process Biochem 46:519–525

    Article  CAS  Google Scholar 

  16. Makkonen HP, Nakas JP (2005) Use of xylanase and Arabinofuranosidase for arabinose removal from unbleached kraft pulp. Biotechnol Lett 27:1675–1679

    Article  CAS  PubMed  Google Scholar 

  17. Adigüzel AO, Tunçer M (2016) Production, characterization and application of a xylanase from Streptomyces sp. AOA40 in fruit juice and bakery industries. J Food Biotechnol 30:189–218

    Article  CAS  Google Scholar 

  18. Rosmine E, Sainjan NC, Silvester R, Alikkunju A, Varghese SA (2017) Statistical optimisation of xylanase production by estuarine Streptomyces sp. and its application in clarification of fruit juice. J Genet Eng Biotechnol 15:393–401

    Article  Google Scholar 

  19. Lee RC, Hrmova M, Burton RA, Lahnstein J, Fincher GB (2003) Bifunctional family 3 glycoside hydrolases from barley with alpha-lArabinofuranosidase and alpha-d-xylosidase activity: characterization, primary structures and COOH-terminal. J Biol Chem 278:5377–5387

    Article  CAS  PubMed  Google Scholar 

  20. Rahman AK, Kato K, Kawai S, Takamizawa K (2003) Substrate specificity of the alpha-l-Arabinofuranosidase from Rhizomucor pusillus HHT-1. Carbohydr Res 338:1469–1476

    Article  CAS  PubMed  Google Scholar 

  21. Debeche T, Cummings N, Connerton I, Debeire P, O’Donohue MJ (2000) Genetic and biochemical characterization of a highly thermostable alpha-l-Arabinofuranosidase from Thermobacillus xylanilyticus. Appl Environ Microb 66:1734–1736

    Article  CAS  Google Scholar 

  22. Canakci S, Kacagan M, Inan K, Belduz AO, Saha BC (2008) Cloning, purification, and characterization of a thermostable alpha-l-Arabinofuranosidase from Anoxybacillus kestanbolensis AC26Sari. Appl Microbiol Biotechnol 81:61–68

    Article  CAS  PubMed  Google Scholar 

  23. Morozkina EV, Slutskaya ES, Fedorova TV, Tugay TI, Golubeva LI, Koroleva OV (2010) Extremophilic microorganisms: biochemical adaptation and biotechnological application (review). Appl Biochem Microbiol 46:1–14

    Article  CAS  Google Scholar 

  24. Lee SH, Lee YE (2014) Cloning, expression, and characterization of a thermostable GH51 α-l-Arabinofuranosidase from Paenibacillus sp. DG-22. J Microbiol Biotechnol 24:236–244

    Article  CAS  PubMed  Google Scholar 

  25. Shi H, Ding H, Huang Y, Wang L, Zhang Y, Li X, Wang F (2014) Expression and characterization of a GH43 endoarabinanase from Thermotoga thermarum. BMC Biotechnol 14:1–9

    Article  CAS  Google Scholar 

  26. Ahmed S, Luis AS, Bras JLA, Ghosh A, Gautam S, Gupta MN et al (2013) A novel α-l-Arabinofuranosidase of family 43 glycoside hydrolase (Ct43Araf) from Clostridium thermocellum. PLoS One 8(9):e73575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang W, Mai-Gisondi G, Stogios PJ, Kaur A, Xu X, Cui H, Turunen O, Savchenko A, Master ER (2014) Elucidation of the molecular basis for arabinoxylan-debranching activity of a thermostable family GH62 α-l-Arabinofuranosidase from Streptomyces thermoviolaceus. Appl Environ Microbiol 80:5317–5329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaur A-P, Nocek B-P, Xu X, Lowden M-J, Leyva J-F, Stogios P-J, Cui H, Leo R-D, Powlowski J, Tsang A, Savchenko A (2015) Functional and structural diversity in GH62 α-l-Arabinofuranosidases from the thermophilic fungus Scytalidium thermophilum. Microb Biotechnol 8:419–433

    Article  CAS  PubMed  Google Scholar 

  29. Bezalel L, Shoham Y, Rosenberg E (1993) Characterization and delignification activity of a thermostable α-l-Arabinofuranosidase from Bacillus Stearothermophilus. Appl Microbiol Biotechnol 40:57–62

    Article  CAS  Google Scholar 

  30. Gilead S, Shoham Y (1995) Purification and characterization of α-l-Arabinofuranosidase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 61:170–174

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Canakci S, Belduz AO, Saha BC, Yasar A, Ayaz FA, Yayli N (2007) Purification and characterization of a highly thermostable α-l-Arabinofuranosidase from Geobacillus Caldoxylolyticus Tk4. Appl Microbiol Biotechnol 75:813–820

    Article  CAS  PubMed  Google Scholar 

  32. Sürmeli Y (2013) Investigation of alkaline and thermal stability of alpha-l-Arabinofuranosidase produced by directed evolution. Unpublished master thesis, İzmir Institute of Technology, İzmir

    Google Scholar 

  33. Yavuz E, Gunes H, Harsa S, Yenidunya AF (2004) Identification of extracellular enzyme producing thermophilic bacilli from Balcova (Agamemnon) geothermal site by ITS rDNA RFLP. J Appl Microbiol 97:810–817

    Article  CAS  PubMed  Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–251

    Article  CAS  PubMed  Google Scholar 

  35. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 3:426–428

    Article  Google Scholar 

  36. Olfa E, Mondher M, Issam S, Ferid L, Nejib MM (2007) Induction, properties and application of xylanase activity from Sclerotinia Sclerotiorum S2 fungus. J Food Biochem 31:96–107

    Article  CAS  Google Scholar 

  37. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shallom D, Belakhov V, Solomon D, Shoham G, Baasov T, Shoham Y (2002) Detailed kinetic analysis and identification of the nucleophile in alpha-l-Arabinofuranosidase from Geobacillus Stearothermophilus T-6, a family 51 glycoside hydrolase. J Biol Chem 277:43667–43673

    Article  CAS  PubMed  Google Scholar 

  39. Lim Y-R, Yoon R-Y, Seo E-S, Kim Y-S, Park C-S, Oh D-K (2010) Hydrolytic properties of a thermostable α-l-Arabinofuranosidase from Caldicellulosiruptor saccharolyticus. J Appl Microbiol 109:1188–1197

    Article  CAS  PubMed  Google Scholar 

  40. Taylor EJ, Smith NL, Turkenburg JP, D’Souza S, Gilbert HJ, Davies GJ (2006) Structural insight into the ligand specificity of a thermostable family 51 Arabinofuranosidase, Araf51, from Clostridium thermocellum. Biochem J 395:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miyazaki K (2005) Hyperthermophilic alpha-l-Arabinofuranosidase from Thermotoga maritima Msb8: molecular cloning, gene expression, and characterization of the recombinant protein. Extremophiles 9:399–406

    Article  CAS  PubMed  Google Scholar 

  42. dos Santos C, Squina F, Navarro A, Oldiges D, Leme A, Ruller R et al (2011) Functional and biophysical characterization of a hyperthermostable GH51 α-l-Arabinofuranosidase from Thermotoga petrophila. Biotech Lett 33:131–137

    Article  CAS  Google Scholar 

  43. Squina FM, Santos CR, Ribeiro DA, Cota J, de Oliveira RR, Ruller R, Mort A, Murakami MT, Prade RA (2010) Substrate cleavage pattern, biophysical characterization and low-resolution structure of a novel hyperthermostable arabinanase from Thermotoga petrophila. Biochem Biophys Res Commun 399:505–511

    Article  CAS  PubMed  Google Scholar 

  44. Sharma HP, Patel H, Sugandha (2017) Enzymatic added extraction and clarification of fruit juices—a review. Crit Rev Food Sci Nutr 57:1215–1227

    Article  CAS  PubMed  Google Scholar 

  45. Huang D, Liu J, Qi Y, Yang K, Xu Y, Feng L (2017) Synergistic hydrolysis of xylan using novel xylanases, β-xylosidases, and an α-l-Arabinofuranosidase from Geobacillus thermodenitrificans NG80-2. Appl Microbiol Biotechnol 101:6023–6037

    Article  CAS  PubMed  Google Scholar 

  46. Cakmak U, Ertunga NS (2016) Gene cloning, expression, immobilization and characterization of endo-xylanase from Geobacillus sp. TF16 and investigation of its industrial applications. J Mol Catal B Enzym 133:S288–S298

    Article  CAS  Google Scholar 

  47. Nagar S, Mittal A, Gupta VK (2012) Enzymatic clarification of fruit juices (apple, pineapple, and tomato) using purified Bacillus pumilus SV-85S xylanase. Biotechnol Bioprocess Eng 17:1165–1175

    Article  CAS  Google Scholar 

  48. Bajaj BK, Manhas K (2012) Production and characterization of xylanase from Bacillus licheniformis P11 (C) with potential for fruit juice and bakery industry. Biocatal Agric Biotechnol 4:330–337

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Biotechnology and Bioengineering Research Center at İzmir Institute of Technology for the facilities and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülşah Şanlı-Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İlgü, H., Sürmeli, Y. & Şanlı-Mohamed, G. A thermophilic α-l-Arabinofuranosidase from Geobacillus vulcani GS90: heterologous expression, biochemical characterization, and its synergistic action in fruit juice enrichment. Eur Food Res Technol 244, 1627–1636 (2018). https://doi.org/10.1007/s00217-018-3075-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3075-7

Keywords

Navigation