Skip to main content
Log in

Assessment of the genetic stability of GMOs with a detailed examination of MON810 using Scorpion probes

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

For the cultivation and maintenance of seeds, genetic mutations have to be avoided as much as possible. According to the Directive 2001/18/EC, genetic stability has to be proven for the approval of GMOs [1]. The investigation of genetic stability can be performed with various methods, but Southern blots are most commonly used. In this study, a different method, a real-time PCR involving Scorpion primer, was developed for the analysis of DNA rearrangements in GMOs. The advantage of this method is that already small changes in sequence can be detected. In addition, large numbers of samples can be tested at once in a single PCR run. Possible alterations in the region of the Scorpion primer can be detected by differences in the real-time PCR plots. The sequence that was analysed contained 130 nucleotides. The sensitivity of Scorpion primers to measure genetic stability was verified in experiments with plasmids that had only minor sequence alterations in the target region. Such small differences led to a total reduction of the fluorescence signal, even in heterozygous samples where the unaltered template was present as well. Scorpion primers were then used to investigate the transgenic sequences of 567 individual seeds of MON810 for maize at the 5′ and the 3′ region of the insert. In combination with SYBR green, the screening procedure allowed a selection of samples for further analysis. If a sample showed low fluorescence with the Scorpion primer but a normal amplification with SYBR green, then the integrity of the insert was checked by sequencing. The results, however, gave no indication of a mutation or rearrangement of MON810 seeds. In additional experiments, the reliability of the method was studied by determining several parameters that are required for a validation, e.g., specificity, cross-reactivity, dynamic range, correlation of the template concentration and the corresponding Ct values, PCR efficiency, relative repeatability standard deviation (RSDr) relative reproducibility standard deviation (RSDR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC–Commission Declaration

  2. Leitliniendokument EFSA (2006) Guidance document for the risk assessment of genetically modified plants and derived food and feed. EFSA J 99:1–100

    Google Scholar 

  3. OECD (2010) Draft consensus document on molecular characterisation of plants derived from modern biotechnology—third revision. 24th Meeting of the OECD Working Group on the Harmonisation of Regulatory Oversight in Biotechnology 7–8 June 2010

  4. Latham JR, Wilson AK, Steinbrecher RA (2006) The mutational consequences of plant transformation. J Biomed Biotechnol 2006:1–7

    Article  Google Scholar 

  5. Wilson A, Latham J, Steinbrecher RA (2006) Transformation-induced mutations in transgenic plants: analysis and biosafety implications. Biotechnol Genet Eng Rev 23:209–234

    CAS  Google Scholar 

  6. Brunaud V, Balzergue S, Dubreucq B, Aubourg S, Samson F, Chauvin S, Bechtold N, Cruaud C, DeRose R, Pelletier G, Lepiniec L, Caboche M, Lecharny A (2002) T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep 3:1152–1157

    Article  CAS  Google Scholar 

  7. Smith N, Kilpatrick JB, Whitelam GC (2001) Superfluous transgene integration in plants. Crit Rev Plant Sci 20:215–249

    CAS  Google Scholar 

  8. Belgian Biosafety Server (2006) Molecular characterisation of the genetic maps of commercial modified plants. http://www.biosafety.be/gmcropff/TP/MGC.html

  9. Szabados L, Kovács I, Oberschall A, Ábrahám E, Kerekes I, Zsigmond L, Nagy R, Alvarado M, Krasovskaja I, Gál M, Berente A, Rédei GP, Ben-Haim A, Koncz C (2002) Distribution of 1,000 sequenced T-DNA tags in the Arabidopsis genome. Plant J 32:233–242

    Article  CAS  Google Scholar 

  10. Tax FE, Vernon DM (2001) T-DNA-associated duplication/translocations in Arabidopsis. Implications for mutant analysis and functional genomics. Plant Physiol 126:1527–1538

    Article  CAS  Google Scholar 

  11. Jackson SA, Zhang P, Chen WP, Philips RL, Friebe B, Muthukrishnan S, Gill BS (2001) High-resolution structural analysis of biolistic transgene integration into the genome of wheat. Theor Appl Genet 103:56–62

    Article  CAS  Google Scholar 

  12. Makarevitch I, Svitashev SK, Somers DA (2003) Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Mol Biol 52:421–432

    Article  CAS  Google Scholar 

  13. Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R (2003) A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Mol Biol 52:161–176

    Article  CAS  Google Scholar 

  14. Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    Article  CAS  Google Scholar 

  15. Rosati A, Bogani P, Santarlasci A, Buiatti M (2008) Characterisation of 3′ transgene insertion site and derived mRNAs in MON810 YieldGard maize. Plant Mol Biol 67:271–281

    Article  CAS  Google Scholar 

  16. Lechtenberg B, Schubert D, Forsbach A, Gils M, Schmidt R (2003) Neither inverted repeat T-DNA configuration nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant J 34:507–517

    Article  CAS  Google Scholar 

  17. Meza TJ, Stangeland B, Mercy IS, Skarn M, Nymoen DA, Berg A, Butenko MA, Hakelin AM, Haslekas C, Meza-Zepeda LA, Aalen RB (2002) Analysis of single-copy Arabidopsis T-DNA-transformed lines showed that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgenes silencing. Nucleic Acid Res 30:4556–4566

    Article  CAS  Google Scholar 

  18. Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447:418–424

    Article  CAS  Google Scholar 

  19. Spencer TM, Obrien JV, Start WG, Adams TR, Gordonkamm WJ, Lemaux PG (1992) Segregation of transgenes in maize. Plant Mol Biol 18:201–210

    Article  CAS  Google Scholar 

  20. Srivastava V, Vasil V, Vasil IK (1996) Molecular characterization of the fate of transgenes in transformed wheat (Triticum aestivum L). Theor Appl Gen 92:1031–1037

    Article  CAS  Google Scholar 

  21. Ulian EC, Magill JM, Magill CW, Smith RH (1996) DNA methylation and expression of NPTII in transgenic petunias and progeny. Theor Appl Gen 92:976–981

    Article  CAS  Google Scholar 

  22. Papazova N, Windels P, Depicker A, Taverniers I, Roldan-ruiz I, Milcamps A, Van Bockstaele E, Van Den Eede G, De Loose M (2006) Sequence stability of the T-DNA-plant junctions in tissue culture in Arabidopsis transgenic lines. Plant Cell Rep 25:1362–1368

    Article  CAS  Google Scholar 

  23. Papazova N, Ghedira R, Van Glabeke S, Bartegi A, Windels P, Taverniers I, Roldan-Ruiz I, Van Bockstaele E, Milcamps A, Van Den Eede G, Depicker A, De Loose M (2008) Stability of the T-DNA flanking regions in transgenic Arabidopsis thaliana plants under influence of abiotic stress and cultivation practices. Plant Cell Rep 27:749–757

    Article  CAS  Google Scholar 

  24. Wilson A, Latham J, Steinbrecher R (2004) Genome scrambling—myth or reality? Transformation-induced mutations in transgenic crop plants. Eco Nexus Technical Report 1–35

  25. Ho MW, Ryan A, Cummins J (1999) Cauliflower mosaic virus promoter—a recipe for disaster. Microb Ecol Health Dis 10:33–59

    Google Scholar 

  26. Ogasawara T, Chikagawa Y, Arakawa F, Nozaki A, Itoh Y, Sasaki K, Umetsu H, Watanabe T, Akiyama H, Maitani T, Toyoda M, Kamada H, Goda Y, Ozeki Y (2005) Frequency of mutations of the transgene, which might result in the loss of the glyphosate-tolerant phenotype, was lowered in Roundup Ready soybeans. J Health Sci 51:197–201

    Article  CAS  Google Scholar 

  27. Miklos JA, Alibhai MF, Bledig SA, Connor-Ward DC, Gao A, Holmes BA, Kolacz KH, Kabuye VT, MacRae TC, Paradise MA, Toedebusch AS, Harrison LA (2007) Characterization of soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene that confers a high degree of resistance to lepidopteran pests. Crop Sci 47:148–157

    Article  CAS  Google Scholar 

  28. Choffnes DS, Philip R, Vodkin LO (2001) A transgenic locus in soybean exhibits a high level of recombination. In Vitro Cell Dev Biol 37:756–762

    Article  CAS  Google Scholar 

  29. Aguilera M, Querci M, Balla B, Prospero A, Ermolli M, Van den Eede G (2008) A qualitative approach for the assessment of the genetic stability of the MON 810 trait in commercial seed maize varieties. Food Anal Methods 1:252–258

    Article  Google Scholar 

  30. Aguilera M, Querci M, Pastor-Benito S, Bellocchi G, Milcamps A, Van den Eede G (2009) Assessing copy number of MON 810 integrations in commercial seed maize varieties by 5′ event-specific real-time PCR validated method coupled to 2 ΔΔCT analysis. Food Anal Methods 2:73–79

    Article  Google Scholar 

  31. Morisset D, Demsar T, Gruden K, Vojvoda J, Stebih D, Zel J (2009) Detection of genetically modified organisms–closing the gaps. Nat Biotechnol 27(8):700–701

    Article  CAS  Google Scholar 

  32. Zaulet M, Rusu L, Kevorkian S, Luca C, Mihacea S, Badea EM, Costache M (2009) Detection and quantification of GMO and sequencing of the DNA amplified products. Rom Biotechnol Lett 14(5):4733–4746

    CAS  Google Scholar 

  33. Kohli A, Griffiths S, Palacios N, Twyman RM, Vain P, Laurie DA, Christou P (1999) Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant J 17:591–601

    Article  CAS  Google Scholar 

  34. Moch K (2006) Epigenetische Effekte bei transgenen Pflanzen: Auswirkungen auf die Risikobewertung. BfN-Skripten 187:1–80 (Ed.: Bundesamt für Naturschutz (BfN) (www.bfn.de)

  35. Yin Z, Plader W, Malepszy S (2004) Transgene inheritance in plants. J Appl Genet 45:127–144

    Google Scholar 

  36. Yeung AT, Hattangadi D, Blakesley L, Nicolas E (2005) Enzymatic mutation detection technologies. Biotechniques 38:749–758

    Article  CAS  Google Scholar 

  37. Dong C, Vincent K, Sharp P (2009) Simultaneous mutation detection of three homologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor. BMC Plant Biol 9:143–155

    Article  Google Scholar 

  38. Solinas A, Brown LJ, McKeen C, Mellor JM, Nicol J, Thelwell N, Brown T (2001) Duplex Scorpion primers in SNP analysis and FRET applications. Nucleic Acids Res 29:1–9

    Article  Google Scholar 

  39. Carters R, Ferguson J, Gaut R, Ravetto P, Thelwell N, Whitcombe D (2008) Design and use of scorpions fluorescent signalling molecules. Methods Mol Biol 429:99–115

    Article  CAS  Google Scholar 

  40. Engl (2008) Definition of minimum performance requirements for analytical methods of GMO testing. Version 13. 04.2009, available at: http://gmo-crl.jrc.it/doc/Method%20requirements.pdf

  41. Thompson M, Ellison LR, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl Chem 74:835–855

    Article  CAS  Google Scholar 

  42. Official Collection of Test Methods in accordance with Article 35 LMBG (2002) Classification no. L 15.05.01, Detection of a genetically modification of maize (Bt176, Bt11, MON810, T25) by amplification of the modified DNA sequence by means of the polymerase chain reaction (PCR) and hybridization of the PCR product with a DNA probe or restriction analysis. German Federal Food Act—Food Analysis, Article 35, June 2002 (loose-leaf edition), Beuth, Berlin Köln

  43. Terry CF, Shanahan DJ, Ballam LD, Harris N, McDowell DG, Parkes HC (2002) Real-time detection of genetically modified soya using Lightcycler and ABI 7700 platforms with TaqMan, Scorpion, and SYBR Green chemistries. J AOAC Int 85:938–944

    CAS  Google Scholar 

  44. Deutsche Lebensmittelchemische Gesellschaft (2005) Aktuelle Fragen in der GVO-Analytik, Positionspapier der Lebensmittelchemischen Gesellschaft Lebensmittelchemie 59:105–g107. http://www.gdch.de/strukturen/fg/lm/ag/bioanal/posi_gvo.htm

  45. Codex Alimentarius Commission FAO-WHO Food Standards Programme (2005)

  46. DIN/CEN TC 275 (2003) prEN 24276 Food analysis–Horizontal methods

  47. Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on genetically modified food and feed

  48. Regulation (EC) No 641/2004 on detailed rules for the implementation of Regulation (EC) No 1829/2003 of the European Parliament and of the Council as regards the application for the authorisation of new genetically modified food and feed, the notification of existing products and adventitious or technically unavoidable presence of genetically modified material which has benefited from a favourable risk evaluation

  49. Andersen CB, Holst-Jensen A, Berdal KG, Thorstensen T, Tengs T (2006) Equal performance of TaqMan, MGB, molecular beacon, and SYBR green-based detection assays in detection and quantification of roundup ready soybean. J Agric Food Chem 54:9658–9663

    Article  CAS  Google Scholar 

  50. Cankar K, Stebih D, Dreo T, Zel J (2006) Critical points of DNA quantification by real-time PCR–effects of DNA extraction method and sample matrix on quantification of genetically modified organism. BMC Biotechnol 6:1–15

    Article  Google Scholar 

  51. Shindo Y, Kuribara H, Matsuoka T, Futo S, Sawada C, Shono J, Akiyama H, Goda Y, Toyoda M, Hino A (2002) Validation of real-time PCR analyzes for line-specific quantitation of genetically modified maize and soybean using new reference molecules. J AOAC Int 85:1119–1126

    CAS  Google Scholar 

  52. Trapmann S (2006) Verwendung von zertifiziertem Referenzmaterial zur Quantifizierung von GVO in Lebens- und Futtermitteln. Application Note 4. Europäische Kommission–Gemeinsame Forschungsstelle. Institut für Referenzmaterialien und -messungen (IRMM) 1–2

  53. Thelwell N, Millington S, Solinas A, Booth J, Brown T (2000) Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res 28:3752–3761

    Article  CAS  Google Scholar 

  54. DIN ISO 5725-3 (1994) Genauigkeit (Richtigkeit und Präzision) von Messverfahren und Messergebnissen- Teil 3: Präzisionsmaße eines vereinheitlichten Messverfahrens unter Zwischenbedingungen

  55. DIN EN ISO 21571 (2005) Lebensmittel—Verfahren zum Nachweis von gentechnisch modifizierten Organismen und ihren Produkten—Nukleinsäureextraktion

  56. EURL-GMFF validation MON 810 (2006). http://gmo-crl.jrc.ec.europa.eu/statusofdoss.htm

  57. Padgette SR, Kolacz KH, Delannay X, Re DB, Lavallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtz DA, Peschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:1451–1461

    Article  CAS  Google Scholar 

  58. Delannay X, Baum TT, Beighley DH, Buettner MJ, Colbe HD, DeFelice MS, Derting CW, Diedrick TJ, Griffin JL, Hagood ES, Hancock FG, LaVallee BJ, Loux MM, Lueschen WE, Matson KW, Moots CK, Murdock E, Nickell AD, Owen MDK, Paschal EH, Prochaska LM, Raymond PJ, Reynolds DB, Rhodes WK, Roeth FW, Sprankle PL, Tarochione LJ, Tinius CN, Walker RH, Wax LM, Weigelt HD, Padgette SR (1995) Yield evaluation of a glyphosate-tolerant soybean line after treatment with glyphosate. Crop Sci 35:1461–1467

    Article  CAS  Google Scholar 

  59. Mason G, Provero P, Vaira AM, Accotto GP (2002) Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol 2:20

    Article  Google Scholar 

  60. Ding C, Jin S (2009) High-throughput methods for SNP genotyping. Methods Mol Biol 578:245–254

    Article  CAS  Google Scholar 

  61. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)). Methods 25(4):402

    Article  CAS  Google Scholar 

  62. Bush SM, Krysan PJ (2010) iTILLING: a personalized approach to the identification of induced mutations in Arabidopsis. Plant Physiol 154:25–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank H. Hörtner, W. Mayer for technical help, conduction of the validation experiment for measuring RSDR, and discussions about this work. We also would like to thank three anonymous reviewers for their valuable comments on the manuscript. This project was supported by a grant from the Bundesministerium für Gesundheit und Frauen (GZ 70420/0127–II/B/9/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Brandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, G., Brandes, C., Joachimsthaler, A. et al. Assessment of the genetic stability of GMOs with a detailed examination of MON810 using Scorpion probes. Eur Food Res Technol 233, 19–30 (2011). https://doi.org/10.1007/s00217-011-1487-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1487-8

Keywords

Navigation