Skip to main content

Advertisement

Log in

Characterisation of 3′ transgene insertion site and derived mRNAs in MON810 YieldGard® maize

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The construct inserted in YieldGard® MON810 maize, produced by Monsanto, contains the CaMV 35S promoter, the hsp70 intron of maize, the cryI(A)b gene for resistance to lepidopterans and the NOS terminator. In a previous work a truncation event at the 3′ end of the cryI(A)b gene leading to the complete loss of the NOS terminator was demonstrated. The 3′ maize genome junction region was isolated in the same experiment not showing any homology with known sequences. The aim of the experiments here reported was therefore to isolate and characterize a larger portion of the 3′ integration junction from genomic DNA of two commercial MON810 maize lines. Specific primers were designed on the 3′ integration junction sequence for the amplification of a 476 bp fragment downstream of the sequence previously detected. In silico analysis identified the whole isolated 3′ genomic region as a gene putatively coding for the HECT E3 ubiquitin ligase. RT-PCR performed in this region produced cDNA variants of different length. In silico translation of these transcripts identified 2 and 18 putative additional aminoacids in different variants, all derived from the adjacent host genomic sequences, added to the truncated CRY1A protein. These putative recombinant proteins did not show homology with any known protein domains. Our data gave new insights on the genomic organization of MON810 in the YieldGard® maize and confirmed the previous suggestion that the integration in the genome of maize caused a complex recombination event without, apparently, interfering with the activity of the partial CRY1A endotoxin and both the vigor and yield of the YieldGard® maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301(5633):653–657

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bogani P, Simoni A, Bettini P, Mugnai M, Pellegrini MG, Buiatti M (1995) Genome flux in tomato auto- and auxotrophic cell clones cultured in different auxin/cytokinin equilibria. I. DNA multiplicity and methylation levels. Genome 38:902–912

    CAS  Google Scholar 

  • Breitler JC, Labeyrie A, Meynard D, Legavre T, Guiderdoni E (2002) Efficient microprojectile bombardment-mediated transformation of rice using gene cassettes. Theor Appl Genet 104:709–719

    Article  PubMed  CAS  Google Scholar 

  • Brunner S, Pea G, Rafalski A (2005) Origins, genetic organization and transcription of a family of non-autonomous helitron elements in maize. Plant J 43(6):799–810

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Jin W, Wang M, Zhang F, Zhou J, Jia Q, Wu Y, Liu F, Wu P (2003) Distribution and characterisation of over 1000 T-DNA tags in rice genome. Plant J 36:105–113

    Article  PubMed  CAS  Google Scholar 

  • Downes BP, Stupar RM, Gingerich DJ, Vierstra RD (2003) The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development. Plant J 35:729–742

    Article  PubMed  CAS  Google Scholar 

  • Dunning Hotopp JC, Clark ME, Oliveira DCS, Foster JM, Fischer P, Muñoz Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756

    Article  Google Scholar 

  • Fitch MM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Biotechnology 10:1466–1472

    Article  CAS  Google Scholar 

  • Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R (2003) A comprehensive characterisation of single-copy T-DNA insertions into the Arabidopsis thaliana genome. Plant Mol Biol 52:161–176

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res 9:11–19

    Article  PubMed  CAS  Google Scholar 

  • Hellmann H, Estelle M (2002) Plant development: regulation by protein degradation. Science 297:793–797

    Article  PubMed  CAS  Google Scholar 

  • Hernandez M, Pla M, Esteve T, Prat S, Puigdomenech P, Ferrando A (2003) A specific real-time quantitative PCR detection system for event MON810 in maize YieldGard® based on the 3′-transgene integration sequence. Transgenic Res 12:179–189

    Article  PubMed  CAS  Google Scholar 

  • Holck A, Va M, Didierjean L, Rudi K (2002) 5′-nuclease PCR for quantitative event-specific detection of the genetically modified Mon810 MaisGard maize. Eur Food Res Technol 214:449–453

    Article  CAS  Google Scholar 

  • Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, Langendijk-Genevaux PS, Pagni M, Sigrist CJA (2006) The PROSITE database. Nucleic Acids Res 34:D227–D230

    Article  PubMed  CAS  Google Scholar 

  • Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An G (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130(4):1636–1644

    Article  PubMed  CAS  Google Scholar 

  • Jeong DH, An S, Kang HG, Park GG, Kim SR, Sim J, Kim YO, Kim MK, Kim SR, Kim J, Shin M, Jung M, An G (2006) Generation of a flanking sequence-tag database for activation-tagging lines in Japonica rice. Plant J 45(1):123–132

    Article  PubMed  CAS  Google Scholar 

  • Kohli A, Griffiths S, Palacios N, Twyman RM, Vain P, Laurie DA, Christou P (1999) Molecular characterisation of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant J 17(6):591–601

    Article  PubMed  CAS  Google Scholar 

  • Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Korber H, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. PNAS USA 86(21):8467–8471

    Article  PubMed  CAS  Google Scholar 

  • Korf I, Flicek P, Duan D, Brent MR (2001) Integrating genomic homology into gene structure prediction. Bioinformatics 17(90001):S140–S148

    PubMed  Google Scholar 

  • Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34:D257–D260. doi:10.1093/nar/gkj079

    Google Scholar 

  • Lindsey K, Wei W, Clarke MC, Mcardle HF, Rooke LM, Topping JF (1993) Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants. Transgenic Res 2(1):33–47

    Article  PubMed  CAS  Google Scholar 

  • Loc TN, Tinjuangjun P, Gatehouse AMR, Christou P, Gatehouse JA (2002) Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Mol Breed 9:231–244

    Article  CAS  Google Scholar 

  • Maqbool SB, Christou P (1999) Multiple traits of agronomic importance in indica rice plants: analysis of transgene integration patterns, expression levels and stability. Mol Breed 5:471–480

    Article  Google Scholar 

  • Mehlo L, Mazithulela G, Twyman RM, Boulton MI, Davies JW, Christou P (2000) Structural analysis of transgene rearrangements and effects on expression in transgenic maize plants generated by particle bombardment. Maydica 45:277–287

    Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski WP, Somers DA (1996) Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol Biotechnol 6(1):17–30

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski WP, Somers DA (1998) Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. PNAS USA 95(21):12106–12110

    Article  PubMed  CAS  Google Scholar 

  • Qin G, Kang D, Dong Y, Shen Y, Zhang L, Deng X, Zhang Y, Li S, Chen N, Niu W, Chen C, Liu P, Chen H, Li J, Ren Y, Gu H, Deng X, Qu LJ, Chen Z (2003) Obtaining and analysis of flanking sequences from T-DNA transformants of Arabidopsis. Plant Sci 165:941–949

    Article  CAS  Google Scholar 

  • Rang A, Linke B, Jansen B (2005) Detection of RNA variants transcribed from the transgene in Roundup Ready soybean. Eur Food Res Technol 220:438–443

    Article  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16(6):276–277

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Salvo-Garrido H, Travella S, Bilham LJ, Harwood WA, Snape JW (2004) The distribution of transgene insertion sites in barley determined by physical and genetic mapping. Genetics 167(3):1371–1379

    Article  PubMed  CAS  Google Scholar 

  • Scholte M, D′erfurth I, Rippa S, Mondy S, Cosson V, Durand P, Breda C, Trinh H, Rodriguez-Lorente I, Kondorosi E, Schultze M, Kondorosi A, Ratet P (2002) T-DNA tagging in the model legume Medicago truncatula allows efficient gene discovery. Mol Breed 10:203–215

    Article  CAS  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. PNAS 95(11):5857–5864

    Article  PubMed  CAS  Google Scholar 

  • Sha Y, Li S, Pei Z, Luo L, Tian Y, He C (2004) Generation and flanking sequence analysis of a rice T-DNA tagged population. Theor Appl Genet 108(2):306–314

    Article  PubMed  CAS  Google Scholar 

  • Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088

    Article  PubMed  CAS  Google Scholar 

  • Somers DA, Makarevitch I (2004) Transgene integration in plants: poking or patching holes in promiscuous genomes? Curr Opin Biotechnol 15(2):126–131

    Article  PubMed  CAS  Google Scholar 

  • Svitashev SK, Somers DA (2001) Genomic interspersions determine the size and complexity of transgene loci in transgenic plants produced by microprojectile bombardment. Genome 44:691–697

    Article  PubMed  CAS  Google Scholar 

  • Svitashev SK, Somers DA (2002) Characterization of transgene loci in plants using FISH: a picture is worth a thousand words. Plant Cell Tissue Organ Cult 69:205–214

    Article  CAS  Google Scholar 

  • Svitashev SK, Ananiev E, Pawlowski WP, Somers DA (2000) Association of transgene integration sites with chromosome rearrangements in hexaploid oat. Theor Appl Genet 100:872–880

    Article  CAS  Google Scholar 

  • Szabados L, Kovacs I, Obershall A, Abrahám E, Kerekes I, Zsigmond L, Nagy R, Alvarado M, Krasovskaja I, Gál M, Berente A, Rédei GP, Haim AB, Koncz C (2002) Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. Plant J 32:233–242

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1(6):178–184

    Article  Google Scholar 

  • Tzfira T, Li J, Lacroix B, Citovsky V (2004). Agrobacterium T-DNA integration: molecules and models. Trends Genet 20(8):375–383

    Article  PubMed  CAS  Google Scholar 

  • Vain P, James VA, Worland B, Snape JW (2002) Transgene behaviour across two generations in a large random population of transgenic rice plants produced by particle bombardment. Theor Appl Genet 105:878–889

    Article  PubMed  CAS  Google Scholar 

  • Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8:135–142

    Article  PubMed  CAS  Google Scholar 

  • Wilson A, Latham J, Steinbrecher R (2006) Transformation-induced mutations in transgenic plants: analysis and biosafety implications. Biotechnol Genet Eng Rev 23:209–234

    CAS  Google Scholar 

  • Windels P, Taverniers I, Depicker A, Van Bockstaele E, De Loose M (2001) Characterisation of the roundup ready soybean insert. Eur Food Res Technol 213:107–111

    Article  CAS  Google Scholar 

  • Zhang J, Guo D, Chang Y, You C, Li X, Dai X, Weng Q, Zhang J, Chen G, Li X, Liu H, Han B, Zhang Q, Wu C (2007) Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J 49(5):947–959

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. G. Monastra for providing seeds of MON810 and isogenic control maize. This work was supported by a grant from MIPAF (Ministero delle Politiche Agricole, Alimentari e Forestali), Project: “OGM in Agricoltura”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Bogani.

Additional information

EMBL Accession #: AM749995; AM749996; AM749997; AM749998; AM750007.AM749999; AM750000; AM750001; AM750002; AM750003; AM750004; AM750005; AM750006.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosati, A., Bogani, P., Santarlasci, A. et al. Characterisation of 3′ transgene insertion site and derived mRNAs in MON810 YieldGard® maize. Plant Mol Biol 67, 271–281 (2008). https://doi.org/10.1007/s11103-008-9315-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9315-7

Keywords

Navigation