Skip to main content

Advertisement

Log in

VHH antibodies: emerging reagents for the analysis of environmental chemicals

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A VHH antibody (or nanobody) is the antigen binding fragment of heavy chain only antibodies. Discovered nearly 25 years ago, they have been investigated for their use in clinical therapeutics and immunodiagnostics, and more recently for environmental monitoring applications. A new and valuable immunoreagent for the analysis of small molecular weight environmental chemicals, VHH will overcome many pitfalls encountered with conventional reagents. In the work so far, VHH antibodies often perform comparably to conventional antibodies for small molecule analysis, are amenable to numerous genetic engineering techniques, and show ease of adaption to other immunodiagnostic platforms for use in environmental monitoring. Recent reviews cover the structure and production of VHH antibodies as well as their use in clinical settings. However, no report focuses on the use of these VHH antibodies to detect small environmental chemicals (MW < 1500 Da). This review article summarizes the efforts made to produce VHHs to various environmental targets, compares the VHH-based assays with conventional antibody assays, and discusses the advantages and limitations in developing these new antibody reagents particularly to small molecule targets.

Overview of the production of VHHs to small environmental chemicals and highlights of the utility of these new emerging reagents

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vincke C, Muyldermans S. Introduction to heavy chain antibodies and derived nanobodies. Methods Mol Biol. 2012;911:15–26.

    CAS  Google Scholar 

  2. Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–97.

    Article  CAS  Google Scholar 

  3. Roovers RC, van Dongen GA, Van Bergen En Henegouwen PM. Nanobodies in therapeutic applications. Curr Opin Mol Therap. 2007;9(4):327–35.

    CAS  Google Scholar 

  4. Smolarek D, Bertrand O, Czerwinski M. Variable fragments of heavy chain antibodies (VHHs): a new magic bullet molecule of medicine? Postepy Hig Med Dosw (Online). 2012;66:348–58.

    Article  Google Scholar 

  5. Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez K, Urrutia M, et al. Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol. 2009;198(3):157–74.

    Article  CAS  Google Scholar 

  6. Frenken LG, van der Linden RH, Hermans PW, Bos JW, Ruuls RC, de Geus B, et al. Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol. 2000;78(1):11–21.

    Article  CAS  Google Scholar 

  7. van der Linden R, de Geus B, Stok W, Bos W, van Wassenaar D, Verrips T, et al. Induction of immune responses and molecular cloning of the heavy chain antibody repertoire of Lama glama. J Immunol Methods. 2000;240(1/2):185–95.

    Article  Google Scholar 

  8. Yau KY, Groves MA, Li S, Sheedy C, Lee H, Tanha J, et al. Selection of hapten-specific single-domain antibodies from a non-immunized llama ribosome display library. J Immunol Methods. 2003;281(1-2):161–75.

    Article  CAS  Google Scholar 

  9. Deschamps RJA, Hall JC, McDermott MR. Polyclonal and monoclonal enzyme immunoassays for picloram detection in water, soil, plants, and urine. J Agric Food Chem. 1990;38(9):1881–6.

    Article  CAS  Google Scholar 

  10. Weiler EW, Jourdan PS, Conrad W. Use of immunoassay in plant-science.21. Levels of indole-3-acetic-acid in intact and decapitated coleoptiles as determined by a specific and highly sensitive solid-phase enzyme-immunoassay. Planta. 1981;153(6):561–71.

    Article  CAS  Google Scholar 

  11. Mertens R, Eberle J, Arnscheidt A, Ledebur A, Weiler EW. Monoclonal-antibodies to plant-growth regulators. 2. Indole-3-acetic-acid. Planta. 1985;166(3):389–93.

    Article  CAS  Google Scholar 

  12. Ladenson RC, Crimmins DL, Landt Y, Ladenson JH. Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment. Anal Chem. 2006;78(13):4501–8.

    Article  CAS  Google Scholar 

  13. Fickling SA, Hampton SM, Teale D, Middleton BA, Marks V. Development of an enzyme-linked-immunosorbent-assay for caffeine. J Immunol Methods. 1990;129(2):159–64.

    Article  CAS  Google Scholar 

  14. Carvalho JJ, Weller MG, Panne U, Schneider RJ. A highly sensitive caffeine immunoassay based on a monoclonal antibody. Anal Bioanal Chem. 2010;396(7):2617–28.

    Article  CAS  Google Scholar 

  15. Alvarez-Rueda N, Behar G, Ferre V, Pugniere M, Roquet F, Gastinel L, et al. Generation of llama single-domain antibodies against methotrexate, a prototypical hapten. Mol Immunol. 2007;44(7):1680–90.

    Article  CAS  Google Scholar 

  16. Hendel J, Sarek LJ, Hvidberg EF. Rapid radioimmunoassay for methotrexate in biological-fluids. Clin Chem. 1976;22(6):813–6.

    CAS  Google Scholar 

  17. Kato Y, Paterson A, Langone JJ. Monoclonal-antibodies to the chemotherapeutic agent methotrexate - Production, properties and comparison with polyclonal antibodies. J Immunol Methods. 1984;67(2):321–36.

    Article  CAS  Google Scholar 

  18. Doyle PJ, Arbabi-Ghahroudi M, Gaudette N, Furzer G, Savard ME, Gleddie S, et al. Cloning, expression, and characterization of a single-domain antibody fragment with affinity for 15-acetyl-deoxynivalenol. Mol Immunol. 2008;45(14):3703–13.

    Article  CAS  Google Scholar 

  19. Usleber E, Schneider E, Martlbauer E, Terplan G. Formats of enzyme-immunoassay for 15-acetyldeoxynivalenol applied to wheat. J Agric Food Chem. 1993;41(11):2019–23.

    Article  CAS  Google Scholar 

  20. Sinha RC, Savard ME, Lau R. Production of monoclonal-antibodies for the specific detection of deoxynivalenol and 15-acetyldeoxynivalenol by ELISA. J Agric Food Chem. 1995;43(6):1740–4.

    Article  CAS  Google Scholar 

  21. van Houwelingen A, De Saeger S, Rusanova T, Waalwijk C, Beekwilder J. Generation of recombinant alpaca VHH antibody fragments for the detection of the mycotoxin ochratoxin A. World Mycotoxin J. 2008;1:407–17.

    Article  Google Scholar 

  22. Thirumala-Devi K, Mayo MA, Reddy G, Reddy SV, Delfosse P, Reddy DVR. Production of polyclonal antibodies against ochratoxin A and its detection in chilies by ELISA. J Agric Food Chem. 2000;48(10):5079–82.

    Article  CAS  Google Scholar 

  23. Tabares-Da Rosa S, Rossotti M, Carleiza C, Carrion F, Pritsch O, Ahn KC, et al. Competitive selection from single domain antibody libraries allows isolation of high-affinity antihapten antibodies that are not favored in the llama immune response. Anal Chem. 2011;83(18):7213–20.

    Article  CAS  Google Scholar 

  24. Ahn KC, Kasagami T, Tsai HJ, Schebb NH, Ogunyoku T, Gee SJ, et al. An immunoassay to evaluate human/environmental exposure to the antimicrobial triclocarban. Environ Sci Technol. 2012;46(1):374–81.

    Article  CAS  Google Scholar 

  25. Kim HJ, McCoy MR, Majkova Z, Dechant JE, Gee SJ, Tabares-Da Rosa S, et al. Isolation of alpaca anti-hapten heavy chain single domain antibodies for development of sensitive immunoassay. Anal Chem. 2012;84(2):1165–71.

    Article  CAS  Google Scholar 

  26. Shan G, Huang H, Stoutamire DW, Gee SJ, Leng G, Hammock BD. A sensitive class specific immunoassay for the detection of pyrethroid metabolites in human urine. Chem Res Toxicol. 2004;17(2):218–25.

    Article  CAS  Google Scholar 

  27. Liu Y, Wu AH, Hu J, Lin MM, Wen MT, Zhang X, et al. Detection of 3-phenoxybenzoic acid in river water with a colloidal gold-based lateral flow immunoassay. Anal Biochem. 2015;483:7–11.

    Article  CAS  Google Scholar 

  28. Bever CR, Majkova Z, Radhakrishnan R, Suni I, McCoy M, Wang Y, et al. Development and utilization of camelid VHH antibodies from alpaca for 2,2',4,4'-tetrabrominated diphenyl ether detection. Anal Chem. 2014;86(15):7875–82.

    Article  CAS  Google Scholar 

  29. Ahn KC, Gee SJ, Tsai HJ, Bennett D, Nishioka MG, Blum A, et al. Immunoassay for monitoring environmental and human exposure to the polybrominated diphenyl ether BDE-47. Environ Sci Technol. 2009;43(20):7784–90.

    Article  CAS  Google Scholar 

  30. Wang J, Li H, Shelver WL, Wang ZH, Li QX, Li J, et al. Development of a monoclonal antibody-based, congener-specific and solvent-tolerable direct enzyme-linked immunosorbent assay for the detection of 2,2 ', 4,4 '-tetrabromodiphenyl ether in environmental samples. Anal Bioanal Chem. 2011;401(7):2249–58.

    Article  CAS  Google Scholar 

  31. Wang J, Bever CR, Majkova Z, Dechant JE, Yang J, Gee SJ, et al. Heterologous antigen selection of camelid heavy chain single domain antibodies against tetrabromobisphenol A. Anal Chem. 2014;86(16):8296–302.

    Article  CAS  Google Scholar 

  32. Xu T, Wang J, Liu SZ, Lu C, Shelver WL, Li QX, et al. A highly sensitive and selective immunoassay for the detection of tetrabromobisphenol A in soil and sediment. Anal Chim Acta. 2012;751:119–27.

    Article  CAS  Google Scholar 

  33. Xu C, Ou J, Cui Y, Wang L, Lv C, Liu K, et al. Development of a monoclonal antibody-based enzyme-linked immunosorbent assay for tetrabromobisphenol A. Monoclonal Antib Immunodiagn Immunother. 2013;32(2):113–8.

    Article  CAS  Google Scholar 

  34. He T, Wang Y, Li P, Zhang Q, Lei J, Zhang Z, et al. Nanobody-based enzyme immunoassay for aflatoxin in agro-products with high tolerance to cosolvent methanol. Anal Chem. 2014;86(17):8873–80.

    Article  CAS  Google Scholar 

  35. Reddy SV, Mayi DK, Reddy MU, Thirumala-Devi K, Reddy DV. Aflatoxins B1 in different grades of chillies (Capsicum annum L.) in India as determined by indirect competitive-ELISA. Food Addit Contam. 2001;18(6):553–8.

    Article  CAS  Google Scholar 

  36. Li PW, Zhang Q, Zhang W. Immunoassays for aflatoxins. Trends Anal Chem. 2009;28(9):1115–26.

    Article  CAS  Google Scholar 

  37. Sheedy C, Yau KY, Hirama T, Mackenzie CR, Hall JC. Selection, characterization, and CDR shuffling of naive llama single-domain antibodies selected against auxin and their cross-reactivity with auxinic herbicides from four chemical families. J Agric Food Chem. 2006;54(10):3668–78.

    Article  CAS  Google Scholar 

  38. Chen A, Wang R, Bever CR, Xing S, Hammock BD, Pan T. Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay. Biomicrofluidics. 2014;8(6):064101.

    Article  Google Scholar 

  39. Wang J, Majkova Z, Bever CR, Yang J, Gee SJ, Li J, et al. One-step immunoassay for tetrabromobisphenol A using a camelid single domain antibody-alkaline phosphatase fusion protein. Anal Chem. 2015;87(9):4741–8.

    Article  CAS  Google Scholar 

  40. Darsana R, Chandrasehar G, Deepa V, Gowthami Y, Chitrikha T, Ayyappan S, et al. Acute toxicity assessment of Reactive Red 120 to certain aquatic organisms. Bull Environ Contam Toxicol. 2015;95(5):582–7.

    Article  CAS  Google Scholar 

  41. Nejib A, Joeele D, Abdellah E, Amane J, Malika T-A. Textile dye adsorption onto raw clay: influence of clay surface properties and dyeing additives. J Colloid Sci Biotechnol. 2014;3:98–110.

    Article  CAS  Google Scholar 

  42. Sharma S, Bhunia H, Bajpai P. TiO2-Assisted photocatalytic degradation of diazo dye reactive red 210: decolorization kinetics and mineralization investigations. J Adv Oxid Technol. 2013;16:306–13.

    CAS  Google Scholar 

  43. Klepacz-Smolka A, Sojka-Ledakowicz J, Ledakowicz S. Biological treatment of post-nanofiltration concentrate of real textile wastewater. Fibres Textiles East Eur. 2015;23:138–43.

    CAS  Google Scholar 

  44. van der Linden RH, Frenken LG, de Geus B, Harmsen MM, Ruuls RC, Stok W, et al. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta. 1999;1431(1):37–46.

    Article  Google Scholar 

  45. Spinelli S, Frenken LG, Hermans P, Verrips T, Brown K, Tegoni M, et al. Camelid heavy-chain variable domains provide efficient combining sites to haptens. Biochemistry. 2000;39(6):1217–22.

    Article  CAS  Google Scholar 

  46. Spinelli S, Tegoni M, Frenken L, van Vliet C, Cambillau C. Lateral recognition of a dye hapten by a llama VHH domain. J Mol Biol. 2001;311(1):123–9.

    Article  CAS  Google Scholar 

  47. Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, Frenken LG, et al. Single-domain antibody fragments with high conformational stability. Protein Sci. 2002;11(3):500–15.

    Article  CAS  Google Scholar 

  48. van der Linden RH, de Geus B, Frenken GJ, Peters H, Verrips CT. Improved production and function of llama heavy chain antibody fragments by molecular evolution. J Biotechnol. 2000;80(3):261–70.

    Article  Google Scholar 

  49. Ladenson JH, Ladenson RC, Landt Y, Crimmins D, inventors (2009) Washington University, assignee. Methods for determining and lowering caffeine concentration in fluids. USA patent US 7,615,218 B2

  50. Franco EJ, Sonneson GJ, Delegge TJ, Hofstetter H, Horn JR, Hofstetter O. Production and characterization of a genetically engineered anti-caffeine camelid antibody and its use in immunoaffinity chromatography. J Chromatogr B. 2010;878(2):177–86.

    Article  CAS  Google Scholar 

  51. Zhao SS, Bukar N, Toulouse JL, Pelechacz D, Robitaille R, Pelletier JN, et al. Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples. Biosens Bioelectron. 2015;64:664–70.

    Article  CAS  Google Scholar 

  52. Fanning SW, Horn JR. An anti-hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop. Protein Sci. 2011;20(7):1196–207.

    Article  CAS  Google Scholar 

  53. Doyle PJ, Saeed H, Hermans A, Gleddie SC, Hussack G, Arbabi-Ghahroudi M, et al. Intracellular expression of a single domain antibody reduces cytotoxicity of 15-acetyldeoxynivalenol in yeast. J Biol Chem. 2009;284(50):35029–39.

    Article  CAS  Google Scholar 

  54. Liu X, Xu Y, Xiong YH, Tu Z, Li YP, He ZY, et al. VHH phage-based competitive real-time immuno-polymerase chain reaction for ultrasensitive detection of ochratoxin A in cereal. Anal Chem. 2014;86(15):7471–7.

    Article  CAS  Google Scholar 

  55. Liu X, Xu Y, Wan DB, Xiong YH, He ZY, Wang XX, et al. Development of a nanobody-alkaline phosphatase fusion protein and its application in a highly sensitive direct competitive fluorescence enzyme immunoassay for detection of ochratoxin A in cereal. Anal Chem. 2015;87(2):1387–94.

    Article  CAS  Google Scholar 

  56. Barbas III CF, Burton DR, Scott JK, Silverman GJ. Phage display: a laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2001.

    Google Scholar 

  57. Gorlani A, Hulsik DL, Adams H, Vriend G, Hermans P, Verrips T. Antibody engineering reveals the important role of J segments in the production efficiency of llama single-domain antibodies in Saccharomyces cerevisiae. Prot Eng Des Selec. 2012;25(1):39–46.

    Article  CAS  Google Scholar 

  58. Harlow E, Lane D. Antibodies: a laboratory manual. Cold Spring Harbor: Cold Spring Harbor Labororatory Press; 1988.

    Google Scholar 

  59. Azhari R, Margel S, Labes A, Haviv Y. Specific removal of paraquat by hemoperfusion through antiparaquat conjugated agarose-polyacrolein microsphere beads. J Biomed Mat Res. 1987;21(1):25–41.

    Article  CAS  Google Scholar 

  60. Nagao M. Production and toxicological application of anti-paraquat antibodies. Jpn J Legal Med. 1989;43(2):134–47.

    CAS  Google Scholar 

  61. Doshi R, Chen BR, Vibat CR, Huang N, Lee CW, Chang G. In vitro nanobody discovery for integral membrane protein targets. Sci Rep. 2014;4:6760.

    Article  Google Scholar 

  62. Strokappe N, Szynol A, Aasa-Chapman M, Gorlani A, Forsman Quigley A, Hulsik DL, et al. Llama antibody fragments recognizing various epitopes of the CD4bs neutralize a broad range of HIV-1 subtypes A, B, and C. Plos One. 2012;7(3):e33298.

    Article  CAS  Google Scholar 

  63. Yau KY, Dubuc G, Li S, Hirama T, Mackenzie CR, Jermutus L, et al. Affinity maturation of a V(H)H by mutational hotspot randomization. J Immunol Methods. 2005;297(1/2):213–124.

    Article  CAS  Google Scholar 

  64. Zielonka S, Weber N, Becker S, Doerner A, Christmann A, Christmann C, et al. Shark attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. J Biotechnol. 2014;191:236–45.

    Article  CAS  Google Scholar 

  65. Bond CJ, Wiesmann C, Marsters Jr JC, Sidhu SS. A structure-based database of antibody variable domain diversity. J Mol Biol. 2005;348(3):699–709.

    Article  CAS  Google Scholar 

  66. Rossotti MA, Pirez M, Gonzalez-Techera A, Cui Y, Bever CS, Lee KS, et al. Method for sorting and pairwise selection of nanobodies for the development of highly sensitive sandwich immunoassays. Anal Chem. 2015;87(23):11907–14.

    Article  CAS  Google Scholar 

  67. Davenport KR, Smith CA, Hofstetter H, Horn JR, Hofstetter O. Site-directed immobilization of a genetically engineered anti-methotrexate antibody via an enzymatically introduced biotin label significantly increases the binding capacity of immunoaffinity columns. J Chromatogr B. 2016. doi:10.1016/j.jchromb.2016.01.021.

    Google Scholar 

  68. Zhang JB, Li QG, Nguyen TD, Tremblay TL, Stone E, To R, et al. A pentavalent single-domain antibody approach to tumor antigen discovery and the development of novel proteomics reagents. J Mol Biol. 2004;341(1):161–9.

    Article  CAS  Google Scholar 

  69. Zhang JB, Tanha J, Hirama T, Khieu NH, To R, Hong TS, et al. Pentamerization of single-domain antibodies from phage libraries: a novel strategy for the rapid generation of high-avidity antibody reagents. J Mol Biol. 2004;335(1):49–56.

    Article  CAS  Google Scholar 

  70. Riazi A, Strong PCR, Coleman R, Chen WX, Hirama T, van Faassen H, et al. Pentavalent single-domain antibodies reduce Campylobacter jejuni motility and colonization in chickens. Plos One. 2013;8(12), e83928.

    Article  Google Scholar 

  71. Liu JL, Zabetakis D, Walper SA, Goldman ER, Anderson GP. Bioconjugates of rhizavidin with single domain antibodies as bifunctional immunoreagents. J Immunol Methods. 2014;411:37–42.

    Article  CAS  Google Scholar 

  72. Govaert J, Pellis M, Deschacht N, Vincke C, Conrath K, Muyldermans S, et al. Dual beneficial effect of interloop disulfide bond for single domain antibody fragments. J Biol Chem. 2012;287(3):1970–9.

    Article  CAS  Google Scholar 

  73. Spinelli S, Frenken L, Bourgeois D, de Ron L, Bos W, Verrips T, et al. The crystal structure of a llama heavy chain variable domain. Nat Struct Biol. 1996;3(9):752–257.

    Article  CAS  Google Scholar 

  74. Saerens D, Conrath K, Govaert J, Muyldermans S. Disulfide bond introduction for general stabilization of immunoglobulin heavy-chain variable domains. J Mol Biol. 2008;377(2):478–88.

    Article  CAS  Google Scholar 

  75. Turner KB, Zabetakis D, Goldman ER, Anderson GP. Enhanced stabilization of a stable single domain antibody for SEB toxin by random mutagenesis and stringent selection. Pro Eng Des Sel. 2014;27(3):89–95.

    Article  CAS  Google Scholar 

  76. Hussack G, Hirama T, Ding W, Mackenzie R, Tanha J. Engineered single-domain antibodies with high protease resistance and thermal stability. Plos One. 2011;6(11), e28218.

    Article  CAS  Google Scholar 

  77. Zabetakis D, Olson MA, Anderson GP, Legler PM, Goldman ER. Evaluation of disulfide bond position to enhance the thermal stability of a highly stable single domain antibody. Plos One. 2014;9(12), e115405.

    Article  Google Scholar 

  78. Akazawa-Ogawa Y, Uegaki K, Hagihara Y. The role of intra-domain disulfide bonds in heat-induced irreversible denaturation of camelid single domain VHH antibodies. J Biochem. 2016;159(1):111–21.

    Article  CAS  Google Scholar 

  79. Radhakrishnan R, Suni II, Bever CS, Hammock BD. Impedance biosensors: applications to sustainability and remaining technical challenges. ACS Sustain Chem Eng. 2014;2(7):1649–55.

    Article  CAS  Google Scholar 

  80. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8.

    Article  CAS  Google Scholar 

  81. Anderson GP, Goldman ER. TNT detection using llama antibodies and a two-step competitive fluid array immunoassay. J Immunol Methods. 2008;339(1):47–54.

    Article  CAS  Google Scholar 

  82. Pardon E, Laeremans T, Triest S, Rasmussen SG, Wohlkonig A, Ruf A, et al. A general protocol for the generation of Nanobodies for structural biology. Nat Protoc. 2014;9(3):674–93.

    Article  CAS  Google Scholar 

  83. Leung IKH. NMR spectroscopy—a simple yet powerful tool in chemical biology. Chem New Zealand. 2015;79:42–50.

    Google Scholar 

  84. Renisio JG, Perez J, Czisch M, Guenneugues M, Bornet O, Frenken L, et al. Solution structure and backbone dynamics of an antigen-free heavy chain variable domain (VHH) from Llama. Proteins. 2002;47(4):546–55.

    Article  CAS  Google Scholar 

  85. Rahbarizadeh F, Ahmadvand D, Sharifzadeh Z. Nanobody; an old concept and new vehicle for immunotargeting. Immunol Investig. 2011;40(3):299–338.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Institute of Environmental Health Sciences Superfund Basic Research Program, P42 ES04699, the National Institute of Occupational Safety and Health Western Center for Agricultural Health and Safety 2U54 OH007550, and the CounterACT Program, National Institutes of Health Office of the Director, and the National Institute of Neurological Disorders and Stroke, grant number U54 NS079202. C.B. was supported by the UC Davis Environmental Health Sciences Core Center P30 ES023513. Z.L.X. was supported by the China Scholarship Council Project 201508440069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirley J. Gee.

Ethics declarations

Research involving animals was reviewed and approved by the University of California Davis Institutional Animal Care and Use Committee.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Published in the topical collection Immunoanalysis for Environmental Monitoring and Human Health with guest editors Shirley J. Gee, Ivan R. Kennedy, Alice Lee, Hideo Ohkawa, Tippawan Prapamontol, and Ting Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bever, C.S., Dong, JX., Vasylieva, N. et al. VHH antibodies: emerging reagents for the analysis of environmental chemicals. Anal Bioanal Chem 408, 5985–6002 (2016). https://doi.org/10.1007/s00216-016-9585-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9585-x

Keywords

Navigation