Skip to main content
Log in

Molecular imaging of paper cross sections by FT-IR spectroscopy and principal component analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The molecular imaging of paper cross sections containing the wet-strength additive poly(amidoamine)–epichlorohydrin (PAE) was effected by Fourier transform infrared (FT-IR) spectroscopic imaging. Thin cross sections of laboratory sheet samples were prepared and transferred onto CaF2 substrates. A laboratory sheet sample without PAE acted as a reference. Principal component analysis (PCA) was applied to identify and to reveal the distribution of PAE across the section. Differences in the loading plots of the fourth and fifth principal components for the sheets with and without PAE were found in the region of the amide I, amide II, and amine bands within a variance of 0.4–0.8 %. The score images of the PCA reveal inhomogeneous distribution of PAE. Small areas of higher concentration of PAE occur across the cross section. The aim of this study was to demonstrate that FT-IR spectroscopic imaging provides spatially resolved quantitative information about the chemical composition of paper, which was successfully achieved.

New analytical approach for imaging paper cross sections at molecular level

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eklund D, Lindström T (1991) Paper chemistry – an introduction. DT Paper Science Publications, Grankulla

    Google Scholar 

  2. Hamm U (2008) Wet strength resins in hygienic paper production. In: Zellcheming – Technical Committee CHAD (ed) Chemical additives for the production of pulp & paper, Fachbuchverlag, Frankfurt

  3. Jing S, Zhanqian S, Xueren Q, Yonghao N (2011) A review on use of fillers in cellulosic paper for functional applications. Ind Eng Chem Res 50(2):661–666

    Article  Google Scholar 

  4. Pikulik II (1997) Wet-web properties and their effect on picking and machine runnability. Pulp Pap Can 98(12):161–165

    CAS  Google Scholar 

  5. Dunlop-Jones N (1996) Wet-strength chemistry. In: Roberts JC (ed) Paper chemistry, chap 7, 2nd edn. Chapman & Hall, London

    Google Scholar 

  6. Horvath AT, Hiorvat AE, Lindström T, Wågberg L (2008) Diffusion of cationic polyelectrolytes into cellulosic fibers. Langmuir 24(19):10797–10806

    Article  CAS  Google Scholar 

  7. Wågberg L (2000) Polyelectrolyte adsorption onto cellulose fibres - a review. Nord Pulp Pap Res J 15(5):586–598

    Article  Google Scholar 

  8. Espy HH (1995) The mechanism of wet-strength development in paper: a review. TAPPI J 78:90–99

    CAS  Google Scholar 

  9. Wågberg L, Björklund M (1993) On the mechanism behind wet strength development in papers containing wet strength resins. Nord Pulp Pap Res J 1(8):53–58

    Article  Google Scholar 

  10. Haggkvist M, Solberg D, Wågberg L, Odberg L (1998) The influence of two wet strength agents on pore size and swelling of pulp fibres and on tensile strength properties. Nord Pulp Pap Res J 13(4):292–298

    Article  CAS  Google Scholar 

  11. Ahola S, Österberg M, Laine J (2008) Cellulose nanofibrils adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15(2):303–314

    Article  CAS  Google Scholar 

  12. Odermatt J, Ringena O, Teucke R, Gerst M, Reiter C (2005) Quantification of styrene acrylate and urea formaldehyde resin, components of a foil impregnation resin, and polyvinyl acetate by Py-GC/MS. Appita J 58(6):462–469

    CAS  Google Scholar 

  13. Odermatt J, Runge T, Meier D, Mauler D (1999) Analysis of paper additives by pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). Papier 53(10A):25–28

    Google Scholar 

  14. Odermatt J, Ringena O, Teucke R, Schmidt-Thummes J (2007) A new method for z-profile measurements of paper additives. Appita J 60(3):200–203

    CAS  Google Scholar 

  15. Yang CQ, Xu Y, Wang D (1996) FT-IR spectroscopy study of the polycarboxylic acids used for paper wet strength improvement. Ind Eng Chem Res 35(11):4037–4042

    Article  CAS  Google Scholar 

  16. Proniewicz LM, Paluszkiewicz C, Weselucha-Birczynska A, Majcherczyk H, Baranski A, Konieczna A (2001) FT-IR and FT-Raman study of hydrothermally degraded cellulose. J Mol Struct 596:163–169

    Article  CAS  Google Scholar 

  17. Tatsumi D, Yamauchi T, Murakami K (1995) FT-IR spectroscopy in the evaluation of dry handsheets with an acrylamide-based dry-strength resin. Nord Pulp Pap Res J 10(2):94–97

    Article  CAS  Google Scholar 

  18. Rouchon V, Pellizzi E, Janssens K (2010) FTIR techniques applied to the detection of gelatin in paper artifacts: From macroscopic to microscopic approach. Appl Phys A Mater Sci Process 100(3):663–669

    Article  CAS  Google Scholar 

  19. Workman JJ Jr (2001) Infrared and Raman spectroscopy in paper and pulp analysis. Appl Spectrosc Rev 36(2–3):139–168

    Article  CAS  Google Scholar 

  20. Wahls MWC, Kentta E, Leyte JC (2000) Depth profiles in coated paper: experimental and simulated FTIR photoacoustic difference magnitude spectra. Appl Spectrosc 54(2):214–220

    Article  CAS  Google Scholar 

  21. Poli T, Chiantore O, Giovagnoli A, Piccirillo A (2012) FTIR imaging investigation in MIR and in an enlarged MIR-NIR spectral range. Anal Bioanal Chem 402(9):2977–2984

    Article  CAS  Google Scholar 

  22. Spring M, Ricci C, Peggie DA, Kazarian SG (2008) ATR-FTIR imaging for the analysis of organic materials in paint cross sections: case studies on paint samples from the National Gallery, London. Anal Bioanal Chem 392(1–2):37–45

    Article  CAS  Google Scholar 

  23. Joseph E, Prati S, Sciutto G, Ioele M, Santopadre P, Mazzeo R (2010) Performance evaluation of mapping and linear imaging FTIR microspectroscopy for the characterization of paint cross sections. Anal Bioanal Chem 396(2):899–910

    Article  CAS  Google Scholar 

  24. Rizzo A (2008) Progress in the application of ATR-FTIR microscopy to the study of multi-layered cross-sections from works of art. Anal Bioanal Chem 392(1–2):47–55

    Article  CAS  Google Scholar 

  25. Belbachir K, Lecompte S, Ta HP, Petibois C, Desbat B (2011) Orientation of molecular groups of fibers in nonoriented samples determined by polarized ATR-FTIR spectroscopy. Anal Bioanal Chem 401:3263–3268

    Article  CAS  Google Scholar 

  26. Tasker S, Badyal JPS, Backson SCE, Richards RW (1994) Hydroxyl accessibility in cellulose. Polymer 35(22):4717–4721

    Article  CAS  Google Scholar 

  27. Mitchell AJ (1990) Second derivative FTIR spectra of native celluloses. Carbohydr Res 197:53–60

    Article  Google Scholar 

  28. Ali M, Emsley AM, Herman H, Heywood RJ (2001) Spectroscopic studies of the ageing of cellulosic paper. Polymer 42:2893–2900

    Article  CAS  Google Scholar 

  29. Sarmiento A, Perez-Alonso M, Olivares M, Castro K, Martinez-Arkarazo I, Fernandez LA, Madariaga JM (2011) Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis. Anal Bioanal Chem 399(10):3601–3611

    Article  CAS  Google Scholar 

  30. Ruiz JRR, Parelló TC, Gómez RC (2012) Comparative study of multivariate methods to identify paper finishes using infrared spectroscopy. IEEE Trans Instrum Meas 61(4):1029–1036

    Article  Google Scholar 

  31. Ferreira PJ, Gamelas JA, Moutinho IM, Ferreira AG, Gomez N, Molleda C, Figueiredo MM (2009) Application of FT-IR-ATR spectroscopy to evaluate the penetration of surface sizing agents into the paper structure. Ind Eng Chem Res 48(8):3867–3872

    Article  CAS  Google Scholar 

  32. Ferreira A, Figueira F, Pessanha S, Nielsen I, Carvalho ML (2010) Study of air-induced paper discolorations by infrared spectroscopy, X-ray fluorescence, and scanning electron microscopy. Appl Spectrosc 64(2):149–153

    Article  CAS  Google Scholar 

  33. Robotti E, Bobba M, Panepinto A, Marengo E (2007) Monitoring of the surface of paper samples exposed to UV light by ATR-FT-IR spectroscopy and use of multivariate control charts. Anal Bioanal Chem 388(5–6):1249–1263

    Article  CAS  Google Scholar 

  34. Eder GC, Spoljaric-Lukacic L, Chernev BS (2012) Visualisation and characterisation of ageing induced changes of polymeric surfaces by spectroscopic imaging methods. Anal Bioanal Chem 403(3):683–695

    Article  CAS  Google Scholar 

  35. de Fonjaudran CM, Nevin A, Pique F, Cather S (2008) Stratigraphic analysis of organic materials in wall painting samples using micro-FTIR attenuated total reflectance and a novel sample preparation technique. Anal Bioanal Chem 392(1–2):77–86

    Article  Google Scholar 

  36. Socrates G (2001) Infrared and Raman characteristic group frequencies. Wiley, Hoboken

    Google Scholar 

  37. Lojewski T, Miskowiec P, Missori M, Lubanska A, Proniewicz LM, Lojewska J (2010) FTIR and UV/vis as methods for evaluation of oxidative degradation of model paper: DFT approach for carbonyl vibrations. Carbohydr Polym 82(2):227–538

    Article  Google Scholar 

  38. Chen HC, Ferrari C, Angiuli M, Yao J, Raspi C, Bramanti E (2010) Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr Polym 82(3):772–778

    Article  CAS  Google Scholar 

  39. Proniewicz LM, Paluszkiewicz C, Weselucha-Birczynska A, Majcherczyk H, Baranski A, Konieczna A (2001) FT-IR and FT-Raman study of hydrothermally degradated cellulose. J Mol Struct 596:163–169

    Article  CAS  Google Scholar 

  40. Ivanova NV, Korolenko EA, Korolik EV, Zhbankov RG (1989) IR spectrum of cellulose. J Appl Spectrosc 51(2):847–851

    Article  Google Scholar 

  41. Mendoza-Payan JG, Gallardo SF, Marquez-Lucero A (2009) Design for an ultrafast water distributed sensor employing polyvinylamine cross-linked with Cu(II). Sens Actuators, B 142:130–140

    Article  CAS  Google Scholar 

  42. Das PK, Ruzmaikina I, Belfiore LA (2000) Poly(vinylamine) complexes with f-block salts from the lanthanide series that exhibit significant glass-transition temperature enhancement. J Polym Sci Part B Polym Phys 38(14):1931–1938

    Article  CAS  Google Scholar 

  43. Yu S, Ma M, Liu J, Tao J, Liu M, Gao C (2011) Study on polyamide thin-film composite nanofiltration membrane by interfacial polymerization of polyvinylamine (PVAm) and isophthaloyl chloride (IPC). J Membr Sci 379:164–173

    Article  CAS  Google Scholar 

  44. Enriquez EP, Schneider HM, Granick S (1995) PMMA adsorption over previously adsorbed PS studied by polarized FTIR-ATR. J Polym Sci Part B Polym Phys 33:2429–2437

    Article  CAS  Google Scholar 

  45. Mallik RR, Pritchard RG, Horley CC, Comyn J (1985) An inelastic electron tunneling spectroscopy (IETS) study of poly(vinylacetate) poly(methyl methacrylate) and poly(vinylalcohol) adsorbed on aluminium oxide. Polymer 26:551–556

    Article  CAS  Google Scholar 

  46. Lojewska J, Miskowiec P, Lojewski T, Proniewicz LM (2005) Cellulose oxidative and hydrolytic degradation: In situ FTIR approach. Polym Degrad Stab 88:512–520

    Article  CAS  Google Scholar 

  47. Colthup NB, Daly LH (1990) Introduction to infrared and Raman spectroscopy. Wiberley, San Diego

    Google Scholar 

Download references

Acknowledgment

The authors wish to thank Bernhard Borchers for initiating this project, for assistance with experimental work, and in particular for his constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Genest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genest, S., Salzer, R. & Steiner, G. Molecular imaging of paper cross sections by FT-IR spectroscopy and principal component analysis. Anal Bioanal Chem 405, 5421–5430 (2013). https://doi.org/10.1007/s00216-013-6967-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6967-1

Keywords

Navigation