Skip to main content
Log in

Performance evaluation of mapping and linear imaging FTIR microspectroscopy for the characterisation of paint cross sections

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Different Fourier transform infrared microspectroscopic techniques, using attenuated total reflection (ATR) mode and single-element mercury–cadmium–telluride (MCT) detector (mapping) or multielement MCT detector (raster scanning), are compared with each other for the characterisation of inorganic compounds and organic substances in paint cross sections. All measurements have been performed on paint cross sections embedded in potassium bromide, a transparent salt in the mid-infrared region, in order to better identify the organic materials without the interference of the usual embedding resin. The limitations and advantages of the different techniques are presented in terms of spatial resolution, data quality and chemical information achieved. For all techniques, the chemical information obtained is found to be nearly identical. However, ATR mapping performed with a recently developed instrumentation shows the best results in terms of spectral quality and spatial resolution. In fact, thin organic layers (∼10 µm) have been not only identified but also accurately located. This paper also highlights the recent introduction of multielement detectors, which may represent a good compromise between mapping and imaging systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Matteini M, Moles A (2003) Scienza e restauro, Metodi di indagine. Nardini Editore, Florence

    Google Scholar 

  2. Pinna D, Galleotti M, Mazzeo R (2009) Scientific examination for the investigation of paintings: a handbook for conservators-restorers. CentroDi, Firenze

    Google Scholar 

  3. Cotte M, Welcomme E, Sol VA, Salom M, Menu M, Walter P, Susini J (2007) Anal Chem 79:6988–6994

    Article  CAS  Google Scholar 

  4. Keune K, Boon JJ (2004) Anal Chem 76:1374–1385

    Article  CAS  Google Scholar 

  5. Bottiroli G, Gallone A, Masala B (2005) Bollettino d'arte volume speciale (Giotto nella Cappella degli Scrovegni), pp 83–105

  6. Van’t Hul-Ehrnreich EH (1970) Stud Conserv 15:175–182

    Article  Google Scholar 

  7. Baker MT, Von Endt DW (1988) Mater Issues Art Archaeol 123:71–76

    CAS  Google Scholar 

  8. Gillard RD, Hardman SM, Thomas RG, Watkinson DE (1994) Stud Conserv 39:187–192

    Article  CAS  Google Scholar 

  9. Derrick MR, Stulik DC, Landry JM (1999) Infrared spectroscopy in conservation science. The Getty Conservation Institute, Los Angeles

    Google Scholar 

  10. Pilc J, White R (1995) Natl Gallery Tech Bull 16:73–84

    Google Scholar 

  11. Langley A, Burnstock A (1999) Proceedings of the 12th Triennial Meeting of ICOM Committee for Conservation. James & James, London

    Google Scholar 

  12. Reffner JA, Martoglio PA, Williams GP (1995) Rev Sci Instrum 66:1298–1302

    Article  CAS  Google Scholar 

  13. Dumas P, Miller L (2003) Vib Spectrosc 32:3–21

    Article  CAS  Google Scholar 

  14. Mazzeo R, Joseph E, Prati S, Millemaggi A (2007) Anal Chim Acta 599:107–117

    Article  CAS  Google Scholar 

  15. Reffner JA, Martoglio PA (1995) In: Humecki HJ (ed) Practical guide to infrared microspectroscopy. Marcel Dekker, New York

    Google Scholar 

  16. Lewis LL, Sommer AJ (2000) Appl Spectrosc 54:324–330

    Article  CAS  Google Scholar 

  17. Lewis LL, Sommer AJ (1999) Appl Spectrosc 53:375–380

    Article  CAS  Google Scholar 

  18. Katon JE (1996) Micron 27:303–314

    Article  CAS  Google Scholar 

  19. Bhargava R, Levin IW (2005) Spectrochemical analysis using infrared multichannel detector. Blackwell, Oxford

    Book  Google Scholar 

  20. Treado PJ, Morris MD (1993) In: Morris MD (ed) Microscopic and spectroscopic imaging of the chemical state. Marcel Dekker, New York

    Google Scholar 

  21. Krishnan K, Powell JR, Hill SL (1995) In: Humecki HJ (ed) Practical guide to infrared microspectroscopy. Marcel Dekker, New York

    Google Scholar 

  22. Hartcock MA, Atkin SC (1988) In: Messerschmidt RG (ed) Infrared microspectroscopy. Theory and applications. Marcel Dekker, New York

    Google Scholar 

  23. Bhargava R, Wall BG, Koenig JL (2000) Appl Spectrosc 54:470–479

    Article  CAS  Google Scholar 

  24. Ebizuka N, Wasaki M, Kobayashi Y, Sato S (1995) Appl Opt 34:7899–7906

    Article  CAS  Google Scholar 

  25. Lewis EN, Treado PJ, Reeder RC, Story GM, Dowrey AE, Marco C, Levin IW (1995) Anal Chem 67:3377–3381

    Article  CAS  Google Scholar 

  26. Burka EM, Curbelo R (2000) US patent 6141100

  27. Chan KLA, Kazarian SG, Mavraki A, Williams DR (2005) Appl Spectrosc 59:149–155

    Article  CAS  Google Scholar 

  28. Ricci C, Bloxham S, Kazarian SG (2007) J Cult Herit 8:387–395

    Article  Google Scholar 

  29. Spring M, Ricci C, Peggie DA, Kazarian SG (2008) Anal Bioanal Chem 392:37–45

    Article  CAS  Google Scholar 

  30. Cotte M, Checroun E, Mazel V, Solé VA, Richardin P, Taniguchi Y, Walter P, Susini J (2009) e-PS 6:1–9

  31. Kazarian SG, Chan KLA (2006) Biochim Biophys Acta 1758:858–867

    Article  CAS  Google Scholar 

  32. Fredericks P, Rintoul L, Coates J (2004) chap No. 7. In: Cazes J, Ewing GW (eds) Ewing’s analytical instrumentation handbook. CRS Press, Boca Raton

    Google Scholar 

  33. Levin IW, Bhargava R (2005) Annu Rev Phys Chem 56:429–474

    Article  CAS  Google Scholar 

  34. van der Weerd J, Heeren RMA, Boon JJ (2004) Stud Conserv 49:193–210

    Article  Google Scholar 

  35. van Loon A, Keune K, Boon JJ (2005) In: Art’05—8th International Conference on the Non destructive Investigations and Microanalysis for the Diagnostic and Conservation of the Cultural and Environmental Heritage, Lecce

  36. Lins A, Giannuzzi LA, Stevie FA, Price B, Tucker M, Gutman N (2001) MRS Proc 712:113–118

    Google Scholar 

  37. Boon JJ, Asahina S (2006) Microsc Microanal 12:1322–1323

    Article  Google Scholar 

  38. Mazel V, Richardin P, Debois D, Touboul D, Cotte M, Brunelle A, Walter P, Laprévote O (2007) Anal Chem 79:9253–9260

    Article  CAS  Google Scholar 

  39. Bruni S, Cariati F, Casadio F, Toniolo L (1999) Vib Spectrosc 20:15–25

    Article  CAS  Google Scholar 

  40. van der Weerd J, Brammer H, Boon JJ, Heeren RMA (2002) Appl Spectrosc 56:276–283

    Article  Google Scholar 

  41. Zieba-Palus J (1999) J Trace Microprobe Tech 17:299–308

    CAS  Google Scholar 

  42. Cotte M, Susini J, Solé VA, Taniguchi Y, Chillida J, Checroun E, Walter P (2008) J Anal At Spectrom 23:820–828

    Article  CAS  Google Scholar 

  43. Gettens RJ, Kuhn H, Chase WT (1993) In: Roy A (ed) Artist's pigments: a handbook of their history and characteristics, vol 2. Oxford University Press, Oxford

    Google Scholar 

  44. Welcomme E, Walter P, Van Elslande E, Tsoucaris G (2006) Appl Phys A Mater Sci Process 83:551–556

    Article  CAS  Google Scholar 

  45. Craddock PT (1996) In: Turner JS (ed) The dictionary of art. Grove's Dictionaries, New York

    Google Scholar 

  46. Lluveras A, Boularand S, Roqué J, Cotte M, Giráldez P, Vendrell-Saz M (2008) Appl Phys A 90:23–33

    Article  CAS  Google Scholar 

  47. Thompson DV Jr (1954) Il libro dell’arte, the craftsman’s handbook of Cennino d’Andrea Cennini. Dover, New York

    Google Scholar 

  48. Tintori L (1982) Burlington Mag 124:94–95

    Google Scholar 

  49. Cesareo R, Castellano A, Buccolieri G, Quarta S, Marabelli M, Santopadre P (2002) In: Van Grieken R, Janssens K, Van't dack L, Meersman G (eds) Art’02—7th International Conference on Non-destructive Testings and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, Antwerp

  50. Cesareo R, Castellano A, Buccolieri G, Quarta S, Marabelli M, Santopadre P (2004) Il Giornale delle Prove non distruttive Monitoraggio Diagnostica 3:66–72

    Google Scholar 

  51. Cesareo R, Castellano A, Buccolieri G, Quarta S, Marabelli M, Santopadre P, Gigante E, Ridolfi S (2005) In: van Grieken R, Janssens K (eds) Cultural heritage conservation and environmental impact assessment by non-destructive testing and micro-analysis. A.A. Balkema, London

    Google Scholar 

  52. Marabelli M, Santopadre P (2005) Bollettino d'arte volume speciale (Giotto nella Cappella degli Scrovegni): 121–144

  53. Gettens RJ, Stout GL (1966) Painting materials. A short encyclopedia. Dover, New York

    Google Scholar 

Download references

Acknowledgment

This research has been partially carried out with the support of the European Union, within the VI Framework Programme (Contract: EU-ARTECH, RII3-CT-2004-506171). The authors also acknowledge the European Synchrotron Radiation Facility for providing synchrotron radiation facilities and would like to thank Dr. M. Cotte for assistance in using beamline ID21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocco Mazzeo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, E., Prati, S., Sciutto, G. et al. Performance evaluation of mapping and linear imaging FTIR microspectroscopy for the characterisation of paint cross sections. Anal Bioanal Chem 396, 899–910 (2010). https://doi.org/10.1007/s00216-009-3269-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3269-8

Keywords

Navigation