Skip to main content
Log in

FTIR imaging investigation in MIR and in an enlarged MIR–NIR spectral range

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The study of polished cross sections is a well-assessed and practical method to investigate the stratigraphy of paintings and multilayer polychromies on works of art, in general. Analyses on cross sections allow us to characterize, at once, all the layers in the stratigraphy, giving information about the artists technique, the number of layers and their composition and sometimes about the conservation history of the artefact. In this paper, the application of an imaging detector focal plane array (FPA) coupled to an infrared (IR) microscope has been studied, focusing on the characteristics and potential of the different working methodologies (attenuated total reflectance (ATR) and total reflection). FPA detector coupled with ATR crystal can “localize” IR information coming from a 30 × 30μm sample area, in a 64 × 64 dot matrix detector. In particular, an innovative analysis methodology has been tested for the total reflectance measurements in order to obtain maximum information with single measurements. Micro-infrared total reflection measurements have been carried out in an extended IR range (from 1,000 to 5,266 cm−1) exploiting the broad spectral response of mercury cadmium telluride detector in order to include overtones and combination bands from near-infrared spectral range without any modification of the standard mid-infrared micro-FT instrumentation. The potentialities of this new approach have been successfully transferred in the imaging/mapping investigations with a minimal tuning of the apparatus. Results obtained on a polished cross section coming from a modern painting and on a micro-sample of a wood polychromy from an undated historic polyptic are shown for demonstration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bitossi G, Giorgi R, Mauro M, Salvadori B, Dei L (2005) Spectroscopic techniques in cultural heritage conservation: a survey. Appl Spectrosc Rev 40:187–228

    Article  CAS  Google Scholar 

  2. Vandenabeele P, Weling B, Moens L, Edwards H, De Reu M, Van Hooydonk G (2000) Analysis with micro Raman spectroscopy of natural organic binding media and varnishes used in art. Anal Chim Acta 407:261–274

    Article  CAS  Google Scholar 

  3. Burgio L, Clark RJH (2001) Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim Acta A Mol Biomol Spectrosc 57:1491–1521

    Article  CAS  Google Scholar 

  4. Doménech Carbó MT, Bosch Reig F, Gimeno Adelantado JV, Periz Martinez V (1996) Fourier transform infrared spectroscopy and the analytical study of works of art for purposes of diagnosis and conservation. Anal Chim Acta 330:207–215

    Article  Google Scholar 

  5. Toniolo L, Casadio F (2001) The analysis of polychrome works of art: 40 years of infrared spectroscopic investigations. J Cult Herit 2(1):71–78

    Article  Google Scholar 

  6. La Russa MF, Ruffolo SA, Barone G, Crisci GM, Mazzoleni P, Pezzino A (2009) The use of FTIR and micro-FTIR spectroscopy: an example of application to cultural heritage. Int J Spectros 2009:1–5. doi:10.1155/2009/893

    Article  Google Scholar 

  7. Van der Weerd J, Brammer H, Boon JJ, Heeren RMA (2003) Preparation of methods and accessories for the infrared spectroscopic analysis of multi-layer painted films. Stud Conservat 49:193

    Article  Google Scholar 

  8. Korte EH, Staat H (1993) Infrared reflection studies of historical varnishes. Fresenius J Anal Chem 347:454–457

    Article  CAS  Google Scholar 

  9. Ploeger R, Chiantore O, Scalarone D, Poli T (2011) Mid-infrared fiber optic reflectance spectroscopy analysis of artists’ alkyd paints on different supports. Appl Spectrosc 65:429–435

    Article  CAS  Google Scholar 

  10. Poli T, Chiantore O, Nervo M, Piccirillo A (2011) Mid IR fiber optic reflectance spectroscopy for the identification of finishing on wooden furniture. Anal Bioanal Chem 400:1161–1171

    Article  CAS  Google Scholar 

  11. Goodall RA, David B, Kershaw P, Fredericks PM (2009) Prehistoric hand stencils at Fern Cave, North Queensland (Australia): environmental and chronological implications of Raman spectroscopy and FT-IR imaging results. Journal of Archeological Science 36:2617–2624

    Article  Google Scholar 

  12. Kazarian SG, Chan KLA (2006) Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta 1758:858–867

    Article  CAS  Google Scholar 

  13. Ricci C, Bloxham S, Kazarian SG (2007) ATR-FTIR imaging of albumen photographic prints. J Cult Herit 8:387–395

    Article  Google Scholar 

  14. Gruchow F, Machill S, Thiele S, Herm C, Salzer R (2009) Imaging FTIR spectroscopic investigations of wood: paint interface of aged polychrome art objects. PS 6:145–150

    CAS  Google Scholar 

  15. Joseph E, Prati S, Sciutto G, Ioele M, Santopadre P, Mazzeo R (2010) Performance evaluation of mapping and linear imaging FTIR microspectroscopy for the characterization of paint cross sections. Anal Bioanal Chem 396:899–910

    Article  CAS  Google Scholar 

  16. Van Loon A, Boon JJ (2004) Characterization of deterioration of bone black in the 17th century Oranjezaal paintings using electron-microscopic and micro-spectroscopic imaging techniques. Spectrochimica Acta Part B 59:1601–1609

    Article  Google Scholar 

  17. Keune K, Boon JJ (2004) Imaging secondary ion mass spectrometry of a paint cross section taken from a early Nederlandish painting by Rogier Van der Weyden. Anal Chem 76(5):1374–1385

    Article  CAS  Google Scholar 

  18. Spring M, Ricci C, Peggie GA, Kazarian SG (2008) ATR-FTIR imaging for the analysis of organic materials in paint cross sections: case studies on paint samples from the National Gallery. London Anal Bioanal Chem 392:37–45

    Article  CAS  Google Scholar 

  19. Van der Weerd J, Brammer H, Boon JJ, Heeren RMA (2002) Fourier transform infrared microscopic imaging of an embedded paint cross-section. Appl Spectrosc 56:275–283

    Article  Google Scholar 

  20. Riedl MJ (2001) Optical design fundamentals for infrared systems. SPIE—The International Society for Optical Engineering, Bellingham

    Book  Google Scholar 

  21. Patterson BM, Havrilla GJ (2007) Infrared microspectroscopic imaging using a large radius germanium internal reflection element and a linear array detector. Appl Spectrosc 61(11):1147–1152

    Article  CAS  Google Scholar 

  22. Patterson BM, Havrilla GJ, Marcott C, Story GM (2006) Attenuated total internal reflection infrared microspectroscopic imaging using a large radius germanium internal reflection element and a focal plane array detector. Appl Spectrosc 60(11):1256–1266

    Article  CAS  Google Scholar 

  23. Lewis EN, Treado PJ, Reeder RC, Story GM, Dowrey AE, Marcott C, Levin IW (1995) Fourier transform spectroscopic imaging using an infrared focal plane array detector. Anal Chem 67:3377–3381

    Article  CAS  Google Scholar 

  24. Salisbury JW, Wald A (1992) The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals. Icarus 96:121–128

    Article  Google Scholar 

  25. Poli T, Elia A, Chiantore O (2009) Surfaces finishing and materials: fiber-optic reflectance spectroscopy (FORS) problems in Cultural Heritage diagnostic. E-Preservation Science 6:174–179

    CAS  Google Scholar 

  26. Trenka E, Oelichmann J (2001) FT-NIR spectroscopy in the ink and paint industry. Buchi Industrial Bulletin 8

  27. Rosi F, Federici A, Brunetti BG, Sgamellotti A, Clementi S, Miliani C (2010) Multivariate chemical mapping of pigments and binders in easel painting cross-sections by micro IR reflection spectroscopy. Anal Bioanal Chem 399:3133–3145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Poli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poli, T., Chiantore, O., Giovagnoli, A. et al. FTIR imaging investigation in MIR and in an enlarged MIR–NIR spectral range. Anal Bioanal Chem 402, 2977–2984 (2012). https://doi.org/10.1007/s00216-012-5765-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5765-5

Keywords

Navigation