Skip to main content
Log in

Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fourier transform infrared spectroscopy is a powerful analytical technique to study organic materials. However, in Cultural Heritage, since the sample under analysis is always a complicated matrix of several materials, data analysis performed through peak-by-peak comparisons of sample spectra with those of standard compounds is a tedious method that does not always provide good results. To overcome this problem, a chemometric model based on principal component analysis was developed to classify and identify organic binding media in artworks. The model allows the differentiation of five families of binders: drying oils, waxes, proteins, gums, and resins, taking into account the absorption bands in two characteristic spectral windows: C–H stretching and carbonyl band. This new methodology was applied in the characterization of binders in three kinds of artworks: papers of historical, archeological, and artistic value, easel paintings, and polychromed stone-based sculptures.

Analysis of the binder in a wallpaper of the 19th century by means of FTIR spectroscopy and chemometrics

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Colombini MP, Fuoco R, Giacomelli A, Muscatello B (1998) Characterization of proteinaceous binders in wall painting samples by Microwave-assisted acid hydrolysis and GC-MS determination of amino acids. Stud Conserv 43:33–41

    Article  CAS  Google Scholar 

  2. Ferreti M (1993) Scientific Investigations of Works of Art. ICCROM, Roma

    Google Scholar 

  3. Marinach C, Papillon MC, Pepe C (2004) Identification of binding media in works of art by gas chromatography-mass spectrometry. J Cult Herit 5:231–240

    Article  Google Scholar 

  4. Colombini MP, Andreotti A, Bonaduce I, Modugno F, Ribechini E (2010) Analytical Strategies for Characterizing Organic Paint Media Using Gas Chromatography/Mass Spectrometry. Acc Chem Res 43:715–727

    Article  CAS  Google Scholar 

  5. Bitossi G, Giorgi R, Mauro M, Salvadori B, Dei L (2005) Spectroscopic Techniques in Cultural Heritage: A Survey. Appl Spectrosc Rev 40:187–228

    Article  CAS  Google Scholar 

  6. Castro K, Vandenabeele P, Rodríguez-Laso MD, Moens L, Madariaga JM (2004) Micro-Raman analysis of coloured lithographs. Anal Bioanal Chem 379:674–683

    Article  CAS  Google Scholar 

  7. Castro K, Pessanha S, Proietti N, Princi E, Capitani D, Carvalho ML, Madariaga JM (2008) Non-invasive and non-destructive NMR, Raman and XRF analysis of a Blaeu coloured map from the seventeenth century. Anal Bioanal Chem 391:433–441

    Article  CAS  Google Scholar 

  8. Casadio F, Toniolo L (2001) The analysis of polychrome works of art:40 years of infrared spectroscopic investigations. J Cult Herit 2:71–78

    Article  Google Scholar 

  9. Newman R (1979) Some applications of infrared spectroscopy in the examination of painting materials. J Am Inst Conserv 19:42–62

    Article  CAS  Google Scholar 

  10. Pérez-Alonso M, Castro K, Alvarez M, Madariaga JM (2004) Scientific analysis versus restorer’s expertise for diagnosis prior to a restoration process: the case of Santa Maria Church (Hermo, Asturias, North of Spain). Anal Chim Acta 524:379–389

    Article  Google Scholar 

  11. Wang Q, Andrews KC (2002) Technological investigation of the decorative coatings on Yangshao pottery from Henan, China. Archaeometry 44:241–250

    Article  CAS  Google Scholar 

  12. Barone G, Crupi V, Galli S, Majolino D, Migliardo P, Venuti V (2003) Spectroscopic Investigation of Greek ceramic artifacts. J Mol Struct 651–653:449–458

    Article  Google Scholar 

  13. Garcia M, Vendrell M (2002) The glasses of the Transept’s Rosette of the Cathedral of Tarragona: Characterization, classification and decay. Bol Soc Esp Ceram V 41:217–224

    Google Scholar 

  14. Greiner E, Paluszkiewicz C, Stoch L (1999) Applying FTIR spectroscopy in the study of archeometric sensor glasses. J Mol Struct 511–512:199–204

    Article  Google Scholar 

  15. Mazzocchin GA, Agnoli F, Mazzocchin S (2003) Investigation of a roman age bulk pigment found in Vicenza. Anal Chim Acta 475:181–190

    Article  CAS  Google Scholar 

  16. Ballirano P, Maras A (2006) Mineralogical characterization of the blue pigment of Michelangelo’s fresco The Last Judgment. Am Mineral 91:997–1005

    Article  CAS  Google Scholar 

  17. Genestar C, Pons C (2005) Earth pigments in painting: characterization and differentiation by means of FT-IR spectroscopy and SEM-EDS microanalysis. Anal Bioanal Chem 382:269–274

    Article  CAS  Google Scholar 

  18. Bakr AM, Kawiak T, Paulikowski M, Sawlowicz Z (2005) Characterisation of 15thcentury red and black pastes used for wall decoration in the Qijmas El-Eshaqi mosque (Cairo, Egypt). J Cult Herit 6:351–356

    Article  Google Scholar 

  19. Ammannati N, Martellucci E, Presicce CP, Carruba AM (2001) The restoration of the Capitoline she wolf: Analysis of the bronze and of the corrosion patina by optical and scanning electron microscopes. Metallurgia Ital 93:43–50

    CAS  Google Scholar 

  20. Reiche I, Vignaud C, Menu M (2002) The crystallinity of ancient bone and dentine: New insights by transmission electron microscopy. Archaeometry 44:447–459

    Article  CAS  Google Scholar 

  21. Ribechini E, Orsini S, Silvano F, Colombini MP (2009) Py-GC/MS, GC/MS and FTIR investigations on LATE Roman-Egyptian adhesives from opus sectile: New insights into ancient recipes and technologies. Anal Chim Acta 638:79–87

    Article  CAS  Google Scholar 

  22. Maravelaki-Kalaitzaki P (2005) Black crusts and patinas on Pentelic marble from the Parthenon and Erechtheum (Acropolis, Athens):characterization and origin. Anal Chim Acta 532:187–198

    Article  CAS  Google Scholar 

  23. Domenech-Carbó MT, Domenech-Carbó A, Gimeno-Adelantado JV, Bosch-Reig F (2001) Identification of synthetic resins used in works of art by Fourier transform infrared spectroscopy. Appl Spectrosc 55:1590–1602

    Article  Google Scholar 

  24. Domenech-Carbó MT, Casas-Catalan MJ, Domenech-Carbo A, Mateo-Castro R, Gimeno-Adelantado JV, Bosch-Reig F (2001) Analytical study of canvas painting collection from the Basilica de la Virgen de los Desamparados using SEM/EDX, FR-IR, GC and electrochemical techniques. Anal Bioanal Chem 369:571–575

    Google Scholar 

  25. Castro K, Sarmiento A, Princi E, Pérez-Alonso M, Rodríguez-Laso MD, Vicini S, Madariaga JM, Pedemonte E (2007) Vibrational spectroscopy at the service of industrial archaeology: nineteenth-century wallpaper. Trac Trend Anal Chem 26:347–359

    Article  CAS  Google Scholar 

  26. Castro K, Pérez-Alonso M, Rodríguez-Laso MD, Etxebarria N, Madariaga JM (2007) Non-invasive and non-destructive micro-XRF and micro-Raman analysis of a decorative wallpaper from the beginning of the 19th century. Anal Bioanal Chem 387:847–860

    Article  CAS  Google Scholar 

  27. Castro K, Sarmiento A, Maguregui M, Martinez-Arkarazo I, Etxebarria N, Angulo M, Urrutikoetxea-Barrutia M, Gonzalez-Cembellin JM, Madariaga JM (2008) Multianalytical approach to the analysis of english polychromed alabaster sculptures: μ-Raman, μ-EDXRF and FTIR spectroscopies. Anal Bioanal Chem 392:755–763

    Article  CAS  Google Scholar 

  28. Castro K, Pérez M, Rodríguez-Laso MD, Madariaga JM (2003) FTIR Spectra database of Inorganic Art Materials. Anal Chem 75:214A–221A

    Article  CAS  Google Scholar 

  29. Pérez-Alonso M, Castro K, Olazabal MA, Madariaga JM (2006) In: Pérez-Arantegui J (ed) 34th International Symposium on Archaeometry. Institución Fernando el Católico (No. 2.621), Zaragoza

    Google Scholar 

  30. Colombini MP, Modugno F (2004) Characterisation of proteinaceous binders in artistic paintings by chromatographic techniques. J Sep Sci 27:147–160

    Article  CAS  Google Scholar 

  31. Gimeno-Adelantado JV, Mateo-Castro R, Doménech-Carbó MT, Bosch-Reig F, Doménech-Carbó A, Casas-Catalán MJ, Osete-Cortina L (2001) Identification of lipid binders in paintings by gas chromatography. Influence of the pigments. J Chromatogr A 922:385–390

    Article  CAS  Google Scholar 

  32. Casoli A, Musini PC, Palla G (1996) Gas chromatographic-mass spectrometric approach to the problem of characterizing binding media in paintings. J Chromatogr A 731:237–246

    Article  CAS  Google Scholar 

  33. Camo Asa (2005) The Unscrambler® 7.6. Trodheim, Norway

  34. Bersani D, Antoliali G, Lottici PP, Casoli A (2003) Raman microspectrometric investigation of wall paintings in S. Giovanni Evangelista Abbey in Parma: a comparison between two artists of the 16th century. Spectrochim Acta A 59:2409–2418

    Article  Google Scholar 

  35. Derrick MR, Stuliz D, Landry JM (1999) Infrared Spectroscopy in Conservation Science. The Getty Conservation Institute, Los Angeles

    Google Scholar 

Download references

Acknowledgments

A. Sarmiento is grateful to the Spanish Ministry of Education and Science for his FPU fellowship. This work was partially funded by the FP6 Project PAPERTECH (ref. INCO-CT-2004-509095) and by the Spanish MEC Project DILICO (ref. CTQ2005-09267-C02-01/PPQ). Authors would like to acknowledge Eleiz Museoa and Diputación Foral de Álava for letting them access to the real samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sarmiento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarmiento, A., Pérez-Alonso, M., Olivares, M. et al. Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis. Anal Bioanal Chem 399, 3601–3611 (2011). https://doi.org/10.1007/s00216-011-4677-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4677-0

Keyword

Navigation