Skip to main content
Log in

Differential scanning calorimetry (DSC) of semicrystalline polymers

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) is an effective analytical tool to characterize the physical properties of a polymer. DSC enables determination of melting, crystallization, and mesomorphic transition temperatures, and the corresponding enthalpy and entropy changes, and characterization of glass transition and other effects that show either changes in heat capacity or a latent heat. Calorimetry takes a special place among other methods. In addition to its simplicity and universality, the energy characteristics (heat capacity C P and its integral over temperature T—enthalpy H), measured via calorimetry, have a clear physical meaning even though sometimes interpretation may be difficult. With introduction of differential scanning calorimeters (DSC) in the early 1960s calorimetry became a standard tool in polymer science. The advantage of DSC compared with other calorimetric techniques lies in the broad dynamic range regarding heating and cooling rates, including isothermal and temperature-modulated operation. Today 12 orders of magnitude in scanning rate can be covered by combining different types of DSCs. Rates as low as 1 μK s−1 are possible and at the other extreme heating and cooling at 1 MK s−1 and higher is possible. The broad dynamic range is especially of interest for semicrystalline polymers because they are commonly far from equilibrium and phase transitions are strongly time (rate) dependent. Nevertheless, there are still several unsolved problems regarding calorimetry of polymers. I try to address a few of these, for example determination of baseline heat capacity, which is related to the problem of crystallinity determination by DSC, or the occurrence of multiple melting peaks. Possible solutions by using advanced calorimetric techniques, for example fast scanning and high frequency AC (temperature-modulated) calorimetry are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. One should be always be aware that a temperature near to the sample is measured and not sample temperature itself.

  2. At infinite time heat flow rate from the sample equals zero but, because of asymmetries of the instrument, a non-zero value is measured.

  3. Unfortunately, this is possible only close to glass transition but in most cases not close to melting and crystallization transitions.

References

  1. Wunderlich B (1990) Thermal analysis. Academic Press, New York

    Google Scholar 

  2. Hemminger W, Höhne GWH (1984) Calorimetry - fundamentals and practice. VCH, Weinheim

    Google Scholar 

  3. Wunderlich B (1986) Thermal analysis. In: Bever MB (ed) Encyclopedia of materials science and engineering. Pergamon Press, Oxford

    Google Scholar 

  4. Richardson M (1989) Thermal analysis. In: Allen G (ed) Comprehensive polymer science, vol 1. Pergamon Press, Oxford

    Google Scholar 

  5. Richardson MJ (1992) The application of differential scanning calorimetry to the measurement of specific heat. In: Maglic KD, Cezairliyan A, Pelewtsky VE (eds) Compendium of thermophysical property measurement methods, vol. 2. Plenum Press, New York

    Google Scholar 

  6. Mathot VBF (1994) Calorimetry and thermal analysis of polymers. Hanser Publishers, München

    Google Scholar 

  7. Bershtein VA, Egorov VM (1994) Differential scanning calorimetry of polymers - physics, chemistry, analysis, technology. In: Kemp TJ (ed) Ellis Horwood series in polymer science and technology. Ellis Horwood Ltd, New York, London, Toronto, Sydney, Tokyo, Singapore

    Google Scholar 

  8. Höhne GWH, Hemminger W, Flammersheim HJ (1996) Differential scanning calorimetry - an introduction for practitioners. Springer, Berlin

    Google Scholar 

  9. Brown ME (1998) Principles and practice. In: Gallagher PK (ed) Handbook of thermal analysis and calorimetry, vol. 1. Elsevier, Amsterdam

    Google Scholar 

  10. Hatakeyama T, Liu Z (1998) The handbook of thermal analysis. John Wiley & Sons, New York, Chichester, Brisbane, Toronto

    Google Scholar 

  11. Groenewoud WM (2001) Characterisation of polymers by thermal analysis. Elsevier Science, Amsterdam

    Google Scholar 

  12. Haines P (2002) Principles of thermal analysis and calorimetry. Royal Society of Chemistry, London

    Book  Google Scholar 

  13. Brown ME (2002) Introduction to thermal analysis: Techniques and applications (hot topics in thermal analysis and calorimetry). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  14. Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, Berlin

    Google Scholar 

  15. LeParlouër P, Mathonat C (2005). Proceedings 33rd NATAS, Universal City, CA, USA

  16. Danley RL (2003) New heat flux DSC measurement technique. Thermochim Acta 395:201–208

    Article  CAS  Google Scholar 

  17. Calvet E, Prat H, Skinner HA (1963) Recent progress in microcalorimetry. Pergamon Press, Oxford, London, New York, Paris

    Google Scholar 

  18. de Barros TMVR, Santos RC, Fernandes AC, da Piedade MEM (1995) Accuracy and precision of heat capacity measurements using a heat flux differential scanning calorimeter. Thermochim Acta 269(270):51–60

    Google Scholar 

  19. Watson ES, O’Neill MO, Justin J, Brenner N (1964) A differential scanning calorimeter for quantitative differential thermal analysis. Anal Chem 36:1233–1238

    Article  CAS  Google Scholar 

  20. O’Neill MJ (1964) The analysis of a temperature-controlled scanning calorimeter. Anal Chem 36:1238–1245

    Article  Google Scholar 

  21. Wunderlich B (1973) Thermal analysis of polymers. J Therm Anal 5:117–136

    Article  CAS  Google Scholar 

  22. Richardson MJ (1997) Quantitative aspects of differential scanning calorimetry. Thermochim Acta 300:15–28

    Article  CAS  Google Scholar 

  23. Höhne GWH, Glöggler E (1989) Some peculiarities of the DSC-2/-7 (Perkin–Elmer) and their influence on accuracy precision of the measurements. Thermochim Acta 151:295–304

    Article  Google Scholar 

  24. Höhne GWH (1991) Remarks on the calibration of differential scanning calorimeters. J Therm Anal 37:1987–2000

    Article  Google Scholar 

  25. Rudtsch S (2002) Uncertainty of heat capacity measurements with differential scanning calorimeters. Thermochim Acta 382:17–25

    Article  CAS  Google Scholar 

  26. Kamasa P, Merzlyakov M, Pyda M, Pak J, Schick C, Wunderlich B (2002) Multi-frequency heat capacity measured with different types of TMDSC. Thermochim Acta 392–393:195–207

    Article  Google Scholar 

  27. Wunderlich B (1995) The ATHAS database on heat capacities of polymers see on www url: http://athas.Prz.Edu.Pl/default.Aspx?Op=db. Pure Appl Chem 67:1019–1026

    Article  CAS  Google Scholar 

  28. Wunderlich B (2003) Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28:383–450

    Article  CAS  Google Scholar 

  29. Vanden Poel G, Mathot VBF (2007) High performance differential scanning calorimetry (hper DSC): A powerful analytical tool for the study of the metastability of polymers. Thermochim Acta 461:107–121

    Article  CAS  Google Scholar 

  30. Pijpers MFJ, Mathot VBF, Goderis B, Scherrenberg R, van der Vegte E (2002) High-speed calorimetry for the analysis of kinetics of vitrification, crystallization and melting of macromolecule. Macromolecules 35:3601–3613

    Article  CAS  Google Scholar 

  31. Poel GV, Mathot VBF (2006) High speed/high performance differential scanning calorimetry (hper DSC): Temperature calibration in the heating and cooling mode and minimization of thermal lag. Thermochim Acta 446:41–54

    Article  CAS  Google Scholar 

  32. Neuenfeld S, Schick C (2006) Verifying the symmetry of differential scanning calorimeters concerning heating and cooling using liquid crystal secondary temperature standards. Thermochim Acta 446:55–65

    Article  CAS  Google Scholar 

  33. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158

    Article  CAS  Google Scholar 

  34. Nakamura K, Watanabe T, Katayama K, Amano T (1972) Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions. J Appl Polym Sci 16:1077–1091

    Article  CAS  Google Scholar 

  35. Nakamura K, Katayama K, Amano T (1973) Some aspects of nonisothermal crystallization of polymers. Ii. Consideration of the isokinetic condition. J Appl Polym Sci 17:1031–1041

    Article  CAS  Google Scholar 

  36. Nakamura K, Watanabe T, Amano T, Katayama K (1974) Some aspects of nonisothermal crystallization of polymers. Iii. Crystallization during melt spinning

  37. Ziabicki A (1974) Theoretical analysis of oriented and non isothermal crystallization i. Phenomenological considerations. Isothermal crystallization accompanied by simultaneous orientation or disorientation. Coll Polym Sci 252:207–221

    Article  CAS  Google Scholar 

  38. Ziabicki A (1974) Theoretical analysis of oriented and non isothermal crystallization 2. Extension of Kolmogorov–Avrami–Evans theory onto processes with variable rates and mechanisms. Coll Polym Sci 252:433–447

    Article  CAS  Google Scholar 

  39. Phillips R, Manson JAE (1997) Prediction and analysis of nonisothermal crystallization of polymers. J Polym Sci, Part B: Polym Phys 35:875–888

    Article  CAS  Google Scholar 

  40. Hoffman JD, Miller RL (1997) Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: Theory and experiment. Polymer 38:3151–3212

    Article  CAS  Google Scholar 

  41. Ziabicki A (2001) Polymer crystallization in complex conditions. Towards more realistic modelling of industrial processes. Macromol Symp 175:225–238

    Article  CAS  Google Scholar 

  42. Vyazovkin S, Sbirrazzuoli N (2003) Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J Phys Chem B 107:882–888

    Article  CAS  Google Scholar 

  43. Blundell DJ, Keller A, Kovacs AJ (1966) A new self-nucleation phenomenon and its application to growing of polymer crystals from solution. J Polym Sci C: Polym Let 4:481

    Article  CAS  Google Scholar 

  44. Chivers RA, Barham PJ, Martinez-Salazar J, Keller A (1982) New look at the crystallization of polyethylene - 2. Crystallization from the melt at low supercoolings. J Polym Sci B: Polym Phys 20:1717–1732

    CAS  Google Scholar 

  45. Fillon B, Wittmann JC, Lotz B, Thierry A (1993) Self-nucleation and recrystallization of lsotactic polypropylene (a phase) investigated by differential scanning calorimetry. J Polym Sci B: Polym Phys 31:1383–1393

    Article  CAS  Google Scholar 

  46. Lorenzo AT, Arnal ML, Albuerne J, Müller AJ (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: Guidelines to avoid common problems. Polym Test 26:222–231

    Article  CAS  Google Scholar 

  47. Piorkowska E, Galeski A, Haudin JM (2006) Critical assessment of overall crystallization kinetics theories and predictions. Prog Polym Sci 31:549–571

    Article  CAS  Google Scholar 

  48. De Santis F, Adamovsky S, Titomanlio G, Schick C (2007) Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules 40:9026–9031

    Article  CAS  Google Scholar 

  49. Kraftmakher Y (2002) Modulation calorimetry and related techniques. Physics Reports 356:1–117

    Article  CAS  Google Scholar 

  50. Corbino OM (1910) Thermische Oszillationen wechselstromdurchflossener Lampen mit dünnem Faden und daraus sich ergebende Anwesenheit geradzahliger Oberschwingungen. Physik Zeitschr 11:413–417

    Google Scholar 

  51. Corbino OM (1911) Periodische Widerstandsänderungen feiner Metallfäden, die durch Wechselströme zum Glühen gebracht werden, sowie Ableitung ihrer thermischen Eigenschaften bei hoher Temperatur. Physik Zeitschr 12:292–295

    CAS  Google Scholar 

  52. Birge NO, Nagel SR (1985) Specific-heat spectroscopy of the glass transition. Phys Rev Lett 54:2674–2677

    Article  CAS  Google Scholar 

  53. Christensen T (1985) The frequency dependence of the specific heat at the glass transition. J Phys (Paris) 46:C8-635–C638-637

    Article  Google Scholar 

  54. Kraftmakher YA (1962) Modulation method of heat capacity measurement. Zurnal prikladnoj mechaniki i techniyeceskoj fiziki 5:176–180

    Google Scholar 

  55. Sullivan P, Seidel G (1966) An ac temperature technique for measuring heat capacities. Ann Acad Sci Fennicae A VI:58–62

    Google Scholar 

  56. Schäfer K (1940) Die stoßanregung intramolekularer schwingungen in gasen und gasmischungen vii. Theorie der schalldispersion bei vorhandensein mehrerer normalschwingungen. Z Phys Chem 46:212–228

    Google Scholar 

  57. Gobrecht H, Hamann K, Willers G (1971) Complex plane analysis of heat capacity of polymers in the glass transition region. J Phys E: Scientific Instruments 4:21–23

    Article  Google Scholar 

  58. Sauerbrunn S, Crowe B, Reading M (1992) Modulated differential scanning calorimetry. Am Lab 24:44–47

    CAS  Google Scholar 

  59. Reading M (1993) Modulated differential scanning calorimetry - a new way forward in materials characterization. Trends Polym Sci 8:248–253

    Google Scholar 

  60. Reading M, Hourston DJ (2006) Modulated temperature differential scanning calorimetry: Theoretical and practical applications in polymer characterisation. Springer, Berlin

    Book  Google Scholar 

  61. Cassettari M, Papucci F, Salvetti G, Tombari E, Veronesi S, Johari GP (1993) Simultaneous measurements of enthalpy and heat-capacity of a thermosetting polymer during the curing process. Rev Sci Instrum 64:1076–1080

    Article  CAS  Google Scholar 

  62. Schick C (2002) Temperature modulated differential scanning calorimetry (TMDSC) - basics and applications to polymers. In: Gallagher PK (ed) Handbook of thermal analysis and calorimetry, vol. 3. Elsevier Science, Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo

    Google Scholar 

  63. Merzlyakov M, Schick C (2001) Simultaneous multi-frequency TMDSC measurements. Thermochim Acta 377:193–204

    Article  CAS  Google Scholar 

  64. Kwon YK, Androsch R, Pyda M, Wunderlich B (2001) Multi-frequency sawtooth modulation of a power-compensation differential scanning calorimeter. Thermochim Acta 367–368:203–215

    Article  Google Scholar 

  65. Wunderlich B, Androsch R, Pyda M, Kwon YK (2000) Heat capacity by multi-frequencies sawtooth modulation. Thermochim Acta 348:181–190

    Article  CAS  Google Scholar 

  66. Androsch R, Wunderlich B (1999) Temperature-modulated DSC using higher harmonics of the Fourier transform. Thermochim Acta 333:27–32

    Article  CAS  Google Scholar 

  67. Schawe JEK (1996) Modulated temperature DSC measurements: The influence of the experimental conditions. Thermochim Acta 271:127–140

    Article  CAS  Google Scholar 

  68. Cassel B (2000) A stepwise specific heat technique for dynamic DSC. Am Lab 32:23–26

    CAS  Google Scholar 

  69. Merzlyakov M, Schick C (2001) Step response analysis in DSC - a fast way to generate heat capacity spectra. Thermochim Acta 380:5–12

    Article  CAS  Google Scholar 

  70. Schawe J, Hütter T, Heit C, Alig I, Lellinger D (2006) Stochastic temperature modulation: A new technique in temperature modulated DSC. Thermochim Acta 446:147–155

    Article  CAS  Google Scholar 

  71. Merzlyakov M, Schick C (1999) Complex heat capacity measurements by TMDSC part 1. Influence of non-linear thermal response. Thermochim Acta 330:55–64

    Article  CAS  Google Scholar 

  72. Schick C, Merzlyakov M, Hensel A (1999) Nonlinear thermal response at the glass transition. J Chem Phys 111:2695–2700

    Article  CAS  Google Scholar 

  73. Wurm A, Merzlyakov M, Schick C (1999) Crystallization of polymers studied by temperature-modulated techniques (TMDSC, TMDMA). J Macromol Sci-Phys B38:693–708

    Article  CAS  Google Scholar 

  74. Schick C, Wurm A, Mohammed A (2003) Formation and disappearance of the rigid amorphous fraction in semicrystalline polymers revealed from frequency dependent heat capacity. Thermochim Acta 396:119–132

    Article  CAS  Google Scholar 

  75. Wurm A, Merzlyakov M, Schick C (1999) Isothermal crystallisation of pcl studied by temperature modulated dynamic mechanical and TMDSC analysis. J Therm Anal Calorim 56:1155–1161

    Article  CAS  Google Scholar 

  76. Merzlyakov M, Schick C (2000) Optimization of experimental parameters in TMDSC - the influence of non-linear and non-stationary thermal response. J Therm Anal Calorim 61:649–659

    Article  CAS  Google Scholar 

  77. Schick C, Merzlyakov M, Minakov A, Wurm A (2000) Crystallization of polymers studied by temperature modulated calorimetric measurements at different frequencies. J Therm Anal Calorim 59:279–288

    Article  CAS  Google Scholar 

  78. Xu H, Cebe P (2004) Heat capacity study of isotactic polystyrene: Dual reversible crystal melting and relaxation of rigid amorphous fraction. Macromolecules 37:2797–2806

    Article  CAS  Google Scholar 

  79. Schick C, Wurm A, Merzlyakov M, Minakov A, Marand H (2001) Crystallization and melting of polycarbonate studied by temperature-modulated DSC (TMDSC). J Therm Anal Calorim 64:549–555

    Article  CAS  Google Scholar 

  80. Schick C, Wurm A, Mohammed A (2001) Vitrification and devitrification of the rigid amorphous fraction of semicrystalline polymers revealed from frequency-dependent heat capacity. Colloid Polym Sci 279:800–806

    Article  CAS  Google Scholar 

  81. Okazaki I, Wunderlich B (1997) Reversible melting in polymer crystals detected by temperature-modulated differential scanning calorimetry. Macromolecules 30:1758–1764

    Article  CAS  Google Scholar 

  82. Okazaki I, Wunderlich B (1997) Reversible local melting in polymer crystals. Macromol Chem Rapid Commun 18:313–318

    Article  CAS  Google Scholar 

  83. Wurm A, Merzlyakov M, Schick C (1998) Reversible melting probed by temperature modulated dynamic mechanical and calorimetric measurements. Colloid Polym Sci 276:289–296

    Article  CAS  Google Scholar 

  84. Androsch R, Wunderlich B (1999) A study of annealing of poly(ethylene-co-octene) by temperature-modulated and standard differential scanning calorimetry. Macromolecules 32:7238–7247

    Article  CAS  Google Scholar 

  85. Hu WB, Albrecht T, Strobl G (1999) Reversible surface melting of pe and peo crystallites indicated by TMDSC. Macromolecules 32:7548–7554

    Article  CAS  Google Scholar 

  86. Scherrenberg R, Mathot VBF, Van Hemelrijck A (1999) The practical applicability of TMDSC to polymeric systems. Thermochim Acta 330:3–19

    Article  CAS  Google Scholar 

  87. Wurm A, Merzlyakov M, Schick C (2000) Reversible melting during crystallization of polymers studied by temperature modulated techniques (TMDSC, TMDMA). J Therm Anal Calorim 60:807–820

    Article  CAS  Google Scholar 

  88. Androsch R, Wunderlich B (2003) The specific reversible melting of polymers. J Polym Sci, Part B 41:2039–2051

    Article  CAS  Google Scholar 

  89. Androsch R, Wunderlich B (2001) Reversible crystallization and melting at the lateral surface of isotactic polypropylene crystals. Macromolecules 34:5950–5960

    Article  CAS  Google Scholar 

  90. Goderis B, Reynaers H, Scherrenberg R, Mathot VBF, Koch MHJ (2001) Temperature reversible transitions in linear polyethylene studied by TMDSC and time-resolved, temperature-modulated waxd/saxs. Macromolecules 34:1779–1787

    Article  CAS  Google Scholar 

  91. Albrecht T, Armbruster S, Keller S, Strobl G (2001) Kinetics of reversible surface crystallization and melting in polyethylene oxide): Effect of crystal thickness observed in the dynamic heat capacity. Eur Phys J E 6:237–243

    Article  CAS  Google Scholar 

  92. Albrecht T, Armbruster S, Keller S, Strobl G (2001) Dynamics of surface crystallization and melting in polyethylene and poly(ethylene oxide) studied by temperature-modulated DSC and heat wave spectroscopy. Macromolecules 34:8456–8467

    Article  CAS  Google Scholar 

  93. Höhne GWH, Merzlyakov M, Schick C (2002) Calibration of magnitude and phase angle of a TMDSC signal part 1: Basic considerations. Thermochim Acta 391:51–67

    Article  Google Scholar 

  94. Merzlyakov M, Höhne GWH, Schick C (2002) Calibration of magnitude and phase angle of a TMDSC signal part 2: Calibration practice. Thermochim Acta 391:69–80

    Article  CAS  Google Scholar 

  95. Merzlyakov M, Schick C (1999) Complex heat capacity measurements by TMDSC part 2: Algorithm for amplitude and phase angle correction. Thermochim Acta 330:65–73

    Article  CAS  Google Scholar 

  96. Huth H, Minakov AA, Serghei A, Kremer F, Schick C (2007) Differential ac-chip calorimeter for glass transition measurements in ultra thin polymeric films. Eur Phys J Special Topics 141:153–160

    Article  Google Scholar 

  97. Huth H, Minakov AA, Schick C (2006) Differential ac-chip calorimeter for glass transition measurements in ultrathin films. J Polym Sci B Polym Phys 44:2996–3005

    Article  CAS  Google Scholar 

  98. Ahrenberg M et al (2009) Unpublished data

  99. Gill PS, Saurbrunn SR, Reading M (1993) Modulated differential scanning calorimetry. J Therm Anal 40:931–939

    Article  CAS  Google Scholar 

  100. Reading M, Luget A, Wilson R (1994) Modulated differential scanning calorimetry. Thermochim Acta 238:295–307

    Article  CAS  Google Scholar 

  101. Mathot VBF, Goderis B, Reynaers H (2003) Metastability in polymer systems studied under extreme conditions: High pressure, scan-iso t-t ramps and high scanning rates. Fibres Text East Eur 11:20–27

    Google Scholar 

  102. Schawe J, Schick C (1991) Influence of the heat conductivity of the sample on DSC curves and its correction. Thermochim Acta 187:335–349

    Article  CAS  Google Scholar 

  103. Schawe JEK, Schick C, Höhne GWH (1994) Dynamic behaviour of power-compensated differential scanning calorimeters. 4. The influence of changes in material properties. Thermochim Acta 244:49–59

    Article  CAS  Google Scholar 

  104. Kempen ATW, Sommer F, Mittemeijer EJ (2002) Calibration and desmearing of a differential thermal analysis measurement signal upon heating and cooling. Thermochim Acta 383:21–30

    Article  CAS  Google Scholar 

  105. Höhne GWH (1991) From DSC curve to thermodynamic potential function. Thermochim Acta 187:283–292

    Article  Google Scholar 

  106. Ulbrich U, Cammenga HK (1993) Kopplung kalorimetrischer mit optischen methoden und deren anwendung zur entschmierung von dsc-kurven. Thermochim Acta 229:53–67

    Article  CAS  Google Scholar 

  107. Höhne GWH, Schawe JEK (1993) Dynamic behaviour of power compensated differential scanning calorimeters.1. DSC as a linear system. Thermochim Acta 229:27–36

    Article  Google Scholar 

  108. Schawe JEK, Schick C, Höhne GWH (1993) Dynamic behaviour of power compensated differential scanning calorimeters. 2. The signal flow. Thermochim Acta 229:37–52

    Article  CAS  Google Scholar 

  109. Höhne GW, Winter W (2005) About models and methods to describe chip-calorimeters and determine sample properties from the measured signal. Thermochim Acta 432:169–176

    Article  CAS  Google Scholar 

  110. Ding EY, Cheng RS, Huang YH (1999) Derivation of temperature variation rule and variation rules of temperature lag, heat flows, internal energy and effective specific heat of platelike sample in temperature modulated differential scanning calorimetry. Thermochim Acta 336:1–15

    Article  CAS  Google Scholar 

  111. Schawe JEK, Winter W (1997) The influence of heat transfer on temperature-modulated DSC measurements. Thermochim Acta 298:9–16

    Article  CAS  Google Scholar 

  112. Claudy P, Commercon JC, Letoffe JM (1983) Heat transfer in a disc-type DSC apparatus. I. Experimental. Thermochim Acta 65:245–255

    Article  CAS  Google Scholar 

  113. Claudy P, Commercon JC, Letoffe JM (1983) Heat transfer in a disc-type DSC apparatus. Ii. Theoretical representation. Thermochim Acta 68:305–316

    Article  CAS  Google Scholar 

  114. Claudy P, Commercon JC, Letoffe JM (1983) Heat transfer in a disc-type DSC apparatus. Iii. Theoretical and experimental correction of the calorimetric signal in scanning mode. Thermochim Acta 68:317–327

    Article  CAS  Google Scholar 

  115. Dong HB, Hunt JD (2005) A numerical model for a heat flux DSC: Determining heat transfer coefficients within a DSC. Mater Sci Eng A 413–414:470–473

    Google Scholar 

  116. Dong HB, Hunt JD (2001) A numerical model of a two-pan heat flux DSC. J Ther Anal Calorim 64:167–176

    Article  CAS  Google Scholar 

  117. Schönborn KH (1983) On the time lag between thermal event and measuring signal in a heat flux calorimeter. Thermochim Acta 69:103–114

    Article  Google Scholar 

  118. Löblich K-R (1994) On the characteristics of the signal curves of heat flux calorimeters in studies of reaction kinetics: Part 1. A contribution to the desmearing technique. Thermochimica Acta 231:7–20

    Article  Google Scholar 

  119. Moukhina E, Kaisersberger E (2009) Temperature dependence of the time constants for deconvolution of heat flow curves. Thermochimica Acta In Press, Accepted Manuscript

  120. Danley RL (2004) Comparison of simulated and actual DSC measurements for first-order transitions. Thermochim Acta 409:111–119

    Article  CAS  Google Scholar 

  121. Wilburn FW, Hesford JR, Flower JR (1968) Use of an analog to improve the performance of a differential thermal analysis apparatus. Anal Chem 40:777–788

    Article  CAS  Google Scholar 

  122. Pijpers M, Mathot V (2008) Optimization of instrument response and resolution of standard- and high-speed power compensation DSC. J Therm Anal Calorim 93:319–327

    Article  CAS  Google Scholar 

  123. Blundell DJ (1987) On the interpretation of multiple melting peaks in poly (ether ether ketone). Polymer 28:2248–2251

    Article  CAS  Google Scholar 

  124. Alizadeh A, Richardson L, Xu J, McCartney S, Marand H, Cheung YW, Chum S (1999) Influence of structural and topological constraints on the crystallization and melting behavior of polymers. 1. Ethylene/1-octene copolymers. Macromolecules 32:6221–6235

    Article  CAS  Google Scholar 

  125. Minakov AA, Mordvintsev DA, Tol R, Schick C (2006) Melting and reorganization of the crystalline fraction and relaxation of the rigid amorphous fraction of isotactic polystyrene on fast heating (30, 000 k/min). Thermochim Acta 442:25–30

    Article  CAS  Google Scholar 

  126. Wunderlich B (1964) The melting of defect polymer crystals. Polymer 5:611–624

    Article  CAS  Google Scholar 

  127. Hellmuth E, Wunderlich B (1965) Superheating of linear high-polymer polyethylene crystals. J Appl Phys 36:3039–3044

    Article  CAS  Google Scholar 

  128. Kamide K, Yamaguchi K (1972) On the DSC fusion thermogram of semicrystalline polymers. Die Makromolekulare Chemie 162:205–218

    Article  CAS  Google Scholar 

  129. Weeks NE, Porter RS (1975) Morphology of ultradrawn polyethylene strands. Ii. Nitric acid etching and melting behavior. J Polym Sci: Polym Phys Ed 13:2049–2063

    Article  CAS  Google Scholar 

  130. Clements J, Ward IM (1982) Superheating effects on the melting of ultra-high modulus linear polyethylene. Polymer 23:935–936

    Article  CAS  Google Scholar 

  131. Starkweather HW (1985) The effect of heating rate on the melting of polytetrafluoroethylene. J Polym Sci: Polymer Physics Edition 23:1177–1185

    Article  CAS  Google Scholar 

  132. Liang GL, Noid DW, Sumpter BG, Wunderlich B (1993) Atomistic details of disordering processes in superheated polymethylene crystals. Acta Polym 44:219–224

    Article  CAS  Google Scholar 

  133. Schawe JEK, Strobl GR (1998) Superheating effects during the melting of crystallites of syndiotactic polypropylene analyzed by temperature-modulated differential scanning calorimetry. Polymer 39:3745–3751

    Article  CAS  Google Scholar 

  134. Toda A, Tomita C, Hikosaka M, Saruyama Y (1998) Melting of polymer crystals observed by temperature modulated DSC and its kinetic modelling. Polymer 39:5093–5104

    Article  CAS  Google Scholar 

  135. Minakov AA, Mordvintsev DA, Schick C (2004) Melting and reorganization of poly(ethylene terephthalate) on fast heating (1, 000 k/s). Polymer 45:3755–3763

    Article  CAS  Google Scholar 

  136. Minakov A, Wurm A, Schick C (2007) Superheating in linear polymers studied by ultrafast nanocalorimetry. Eur Phys J E Soft Matter 23:43–53

    Article  CAS  Google Scholar 

  137. Toda A, Kojima I, Hikosaka M (2007) Melting kinetics of polymer crystals with an entropic barrier. Macromolecules

  138. Wunderlich B (2007) One hundred years research on supercooling and superheating. Thermochim Acta 461:4–13

    Article  CAS  Google Scholar 

  139. Minakov AA, van Herwaarden AW, Wien W, Wurm A, Schick C (2007) Advanced nonadiabatic ultrafast nanocalorimetry and superheating phenomenon in linear polymers. Thermochim Acta 461:96–106

    Article  CAS  Google Scholar 

  140. Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 mk/s. Rev Sci Instrum 78:073902–073910

    Article  CAS  Google Scholar 

  141. Tol RT, Minakov AA, Adamovsky SA, Mathot VBF, Schick C (2006) Metastability of polymer crystallites formed at low temperature studied by ultra fast calorimetry. Polyamide 6 confined in sub-micrometer droplets vs bulk pa6. Polymer 47:2172–2178

    Article  CAS  Google Scholar 

  142. Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov AA, Di Lorenzo ML, Schick C, Wunderlich B (2006) Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polymer Sci, Part B: Polymer Phys 44:1364–1377

    Article  CAS  Google Scholar 

  143. Minakov AA, Mordvintsev DA, Schick C (2005) Isothermal reorganization of poly(ethylene terephthalate) revealed by fast calorimetry (1000 k s-1; 5 ms). Faraday Discuss 128:261–270

    Article  CAS  Google Scholar 

  144. Kim HG, Robertson RE (1998) A new approach for estimating the recrystallization rate and equilibrium melting temperature. J Polym Sci, Part B: Polym Phys 36:133–141

    Article  CAS  Google Scholar 

  145. Efremov MY, Olson EA, Zhang M, Schiettekatte F, Zhang Z, Allen LH (2004) Ultrasensitive, fast, thin-film differential scanning calorimeter. Rev Sci Instrum 75:179–191

    Article  CAS  Google Scholar 

  146. Lopeandia AF, Valenzuela J, Rodríguez-Viejo J (2008) Power compensated thin film calorimetry at fast heating rates. Sens Actuators A: Phys 143:256–264

    Article  CAS  Google Scholar 

  147. Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403:55–63

    Article  CAS  Google Scholar 

  148. Kwan AT, Efremov MY, Olson EA, Schiettekatte F, Zhang M, Geil PH, Allen LH (2001) Nanoscale calorimetry of isolated polyethylene single crystals. J Polym Sci, Part B: Polym Phys 39:1237–1245

    Article  CAS  Google Scholar 

  149. Lopeandía AF, Cerdó LI, Clavaguera-Mora MT, Arana LR, Jensen KF, Muñoz FJ, Rodríguez-Viejoa J (2005) Sensitive power compensated scanning calorimeter for analysis of phase transformations in small samples. Rev Sci Instrum 76:065104

    Article  CAS  Google Scholar 

  150. Zhang M, Efremov MY, Schiettekatte F, Olson EA, Kwan AT, Lai SL, Wisleder T, Greene JE, Allen LH (2000) Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys Rev B: Condens Matter Mater Phys 62:10548–10557

    CAS  Google Scholar 

  151. Gao YL, Zhuravlev E, Zou CD, Yang B, Zhai QJ, Schick C (2008) Calorimetric measurements of undercooling in single micron sized snagcu particles in a wide range of cooling rates. Thermochim Acta 482:1–7

    Article  CAS  Google Scholar 

  152. van Herwaarden AW (2005) Overview of calorimeter chips for various applications. Thermochim Acta 432:192–201

    Article  CAS  Google Scholar 

  153. Jones JB, Barenbergt S, Geil PH (1979) Amorphous linear polyethylene. Polymer 20:903–916

    Article  CAS  Google Scholar 

  154. Merzlyakov M (2003) Integrated circuit thermopile as a new type of temperature modulated calorimeter. Thermochim Acta 403:65–81

    Article  CAS  Google Scholar 

  155. Minakov AA, Roy SB, Bugoslavsky YV, Cohen LF (2005) Thin-film alternating current nanocalorimeter for low temperatures and high magnetic fields. Rev Sci Instrum 76:043906

    Article  CAS  Google Scholar 

  156. Serghei A, Huth H, Schick C, Kremer F (2008) Glassy dynamics in thin polymer layers having a free upper interface. Macromolecules 41:3636–3639

    Article  CAS  Google Scholar 

  157. Serghei A, Mikhailova Y, Huth H, Schick C, Eichhorn KJ, Voit B, Krerner F (2005) Molecular dynamics of hyperbranched polyesters in the confinement of thin films. Eur Phys J E 17:199–202

    Article  CAS  Google Scholar 

  158. Serghei A, Huth H, Schellenberger M, Schick C, Kremer F (2005) Pattern formation in thin polystyrene films induced by an enhanced mobility in ambient air. Phys Rev E 71:061801-061801–061801-061804

    Article  CAS  Google Scholar 

  159. Lupascu V, Huth H, Schick C, Wübbenhorst M (2005) Specific heat and dielectric relaxations in ultra-thin ps layers. Thermochim Acta 432:222–228

    Article  CAS  Google Scholar 

  160. Zhou D, Huth H, Gao Y, Xue G, Schick C (2008) Calorimetric glass transition of poly(2, 6-dimethyl-1, 5-phenylene oxide) thin films. Macromolecules 41:7662–7666

    Article  CAS  Google Scholar 

  161. Mathot VBF, Pijpers MFJ (1989) Heat capacity, enthalpy and crystallinity of polymers from DSC measurements and determination of the DSC peak base lin. Thermochim Acta 151:241–259

    Article  CAS  Google Scholar 

  162. Mathot VBF (1984) Temperature dependence of some thermodynamic functions for amorphous and semi-crystalline polymers. Polymer 25:579–599

    Article  CAS  Google Scholar 

  163. Mathot VBF, Pijpers MFJ (1983) Heat capacity, enthalpy and crystallinity for a linear polyethylene obtained by DSC. J Therm Anal 28:349–358

    Article  CAS  Google Scholar 

  164. Gray AP (1970) Polymer crystallinity determinations by DSC. Thermochim Acta 1:563–579

    Article  CAS  Google Scholar 

  165. Alsleben M, Schick C, Mischok W (1991) Determination of peak base line for semicrystalline polymer. Thermochim Acta 187:261–268

    Article  CAS  Google Scholar 

  166. Alsleben M, Schick C (1994) The melting of polymers-a three-phase approach. Thermochim Acta 238:203–227

    Article  CAS  Google Scholar 

  167. Righetti MC, Tombari E, Angiuli M, Lorenzo MLD (2007) Enthalpy-based determination of crystalline, mobile amorphous and rigid amorphous fractions in semicrystalline polymers: Poly(ethylene terephthalate). Thermochim Acta 462:15–24

    Article  CAS  Google Scholar 

  168. Cristina Righetti M, Tombari E, Di Lorenzo ML (2008) Crystalline, mobile amorphous and rigid amorphous fractions in isotactic polystyrene. Eur Polym J 44:2659–2667

    Article  CAS  Google Scholar 

  169. Di Lorenzo ML (2009) The melting process and the rigid amorphous fraction of cis-1,4-polybutadiene. Polymer 50:578–584

    Article  CAS  Google Scholar 

  170. Ishida Y, Yamafuji K, Ito H, Takayanagi M (1962) Effects of degree of crystallinity upon dielectric behaviors in some aromatic polyesters. Kolloid-Zeitschrift & Zeitschrift für Polymere 184:97–108

    Article  CAS  Google Scholar 

  171. Suzuki H, Grebowicz J, Wunderlich B (1985) Glass transition of poly(oxymethylene). Brit Polym J 17:1–3

    Article  CAS  Google Scholar 

  172. Righetti MC, DiLorenzo ML, Tombari E, Angiuli M (2008) The low-temperature endotherm in poly(ethylene terephthalate): Partial melting and rigid amorphous fraction mobilization. J Phys Chem B 112:4233–4241

    Article  CAS  Google Scholar 

  173. Lu SX, Cebe P (1996) Effects of annealing on the disappearance and creation of constrained amorphous phase. Polymer 37:4857–4863

    Article  CAS  Google Scholar 

  174. Xu H, Cebe P (2005) Transitions from solid to liquid in isotactic polystyrene studied by thermal analysis and x-ray scattering. Polymer 46:8734–8744

    CAS  Google Scholar 

  175. Chen H, Cebe P (2009) Vitrification and devitrification of rigid amorphous fraction of pet during quasi-isothermal cooling and heating. Macromolecules 42:288–292

    Article  CAS  Google Scholar 

  176. Wunderlich B (2007) Thermal analysis of macromolecules. J Therm Anal Calorim 89:321–356

    Article  CAS  Google Scholar 

  177. Wang S, Tozaki K, Hayashi H, Hosaka S, Inaba H (2003) Observation of multiple phase transitions in n-C22H46 using a high resolution and super-sensitive DSC. Thermochim Acta 408:31–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I acknowledge the valuable contributions of all my coworkers, especially A. Minakov, M. Merzlyakov, A. Wurm, H. Huth, S. Adamovsky, and E. Zhuravlev, and financial support from the German Science Foundation (DFG) and the European Union which made this paper possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schick, C. Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem 395, 1589–1611 (2009). https://doi.org/10.1007/s00216-009-3169-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3169-y

Keywords

Navigation