Skip to main content

Material Characterization by Fast Scanning Calorimetry: Practice and Applications

  • Chapter
  • First Online:
Fast Scanning Calorimetry

Abstract

Fast scanning calorimetry (FSC) is used for the measurement of phase transformations over a wide scanning rate range. We describe the use of FSC, including temperature measurement, correction, and curve evaluation. We focus especially on topics regarding sensor treatment and sample preparation on examples of polymers and metal alloys. Furthermore, we discuss general concepts for the analysis of materials using FSC. In this context, we discuss processes like glass formability and crystallization of metal alloys. Through the example of polymers we discuss the analysis of the glass transition and the influence of the different mobile and rigid fractions on the glass behavior. Different methods to study crystallization, reorganization, and melting are discussed with the help of polymer examples. For practical purposes, the behavior of the initial material and material stability are of interest. Therefore, we extensively discuss the sample preparation, measurement, and evaluation for these topics.

The fundamental discussion can be adapted for all types of FSC instruments using chip sensors. As an example of such an instrument we use the Flash DSC. This is a widely used, commercial fast scanning calorimeter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathot VBF (2000) Thermal analysis and Calorimetry beyond 2000: challenges and new routes. Thermochim Acta 355:1–33

    Article  Google Scholar 

  2. Mathot VBF, Goderis B, Reynaers H (2003) Metastability in polymer systems studied under extreme conditions: high pressure, scan-iso T-t ramps and high scanning rates. Fibres Text East Eur 11:20–27

    Google Scholar 

  3. Schick C (2009) Differential scanning Calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem 395:1589–1611

    Article  Google Scholar 

  4. van Herwaarden S, Iervolino E, van Herwaarden F, Wijffels T, Leenaers A, Mathot V (2011) Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim Acta 522:46–52

    Article  Google Scholar 

  5. Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403:55–63

    Article  Google Scholar 

  6. Adamovsky S, Schick C (2004) Ultra-fast isothermal Calorimetry using thin film sensors. Thermochim Acta 415:1–7

    Article  Google Scholar 

  7. van Herwaarden AW (2005) Overview of different calorimeter chips for various applications. Thermochim Acta 432:192–201

    Google Scholar 

  8. Wurm A, Zhuravlev E, Eckstein K, Jehnichen D, Pospiech D, Androsch R, Wunderlich B, Schick C (2012) Crystallization and homogeneous nucleation kinetics of poly(ε-caprolactone) (PCL) with different molar masses. Macromolecules 45:3816–3828

    Article  Google Scholar 

  9. Splinter R, van Herwaarden AW, van Wetten IA, Pfreundt A, Svendsen WE (2015) Fast scanning calorimetry of liquid samples with chips. Thermochim Acta 603:162–171

    Article  Google Scholar 

  10. van Wetten IA, van Herwaarden AW, Splinter R, Boerrigter-Eenling R, van Ruth SM (2015) Detection of sunflower oil in extra virgin olive oil by fast differential scanning calorimetry. Thermochim Acta 603:237–243

    Article  Google Scholar 

  11. van de Kerkhof E, van Grinsven PPW. U. S. Patent Application Pub. US2009/0310644 A1

    Google Scholar 

  12. Schawe JEK (2014) Influence of processing conditions on polymer crystallization measured by fast scanning DSC. J Therm Anal Calorim 116:1165–1173

    Article  Google Scholar 

  13. Höhne GWH, Schawe J, Schick C (1993) Temperature calibration on cooling using liquid crystal phase transition. Thermochim Acta 221:129–137

    Article  Google Scholar 

  14. Neuenfeld S, Schick C (2006) Verifying the symmetry of differential scanning calorimeters concerning heating and cooling using liquid crystal secondary temperature standards. Thermochim Acta 446:55–65

    Article  Google Scholar 

  15. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta 522:36–45

    Article  Google Scholar 

  16. Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, New York, pp 340–343

    Google Scholar 

  17. Höhne GWH, Schawe JEK (1993) Dynamic behavior of power compensated differential scanning calorimeters. Part 1. DSC as a linear system. Thermochim Acta 229:27–36

    Article  Google Scholar 

  18. Schawe JEK, Schick C, Höhne GWH (1994) Dynamic behavior of power compensated differential scanning calorimeters. Part 4. The influence of changes in material properties. Thermochim Acta 244:49–59

    Article  Google Scholar 

  19. Moynihan CT, Easteal AJ, DeBolt MA, Tucker J (1976) Dependence of the fictive temperature of glasses on cooling rate. J Am Ceram Soc 59:12–16

    Article  Google Scholar 

  20. Richardson MJ, Savill NG (1975) Derivation of accurate glass transition temperatures by differential scanning calorimetry. Polymer 16:753–757

    Article  Google Scholar 

  21. Schawe JEK (1998) Description of thermal relaxation of polystyrene close to the glass transition. J Polym Sci Part B Polym Phys 36:2165–2175

    Article  Google Scholar 

  22. Schawe JEK (2015) Measurement of the thermal glass transition of polystyrene in a cooling rate range of more than six decades. Thermochim Acta 603:128–134

    Article  Google Scholar 

  23. Flammersheim HJ, Eckardt N, Kunze W (1991) The deconvolution of DSC-curves in the experimental time domain. Thermochim Acta 187:269–274

    Article  Google Scholar 

  24. Höhne GWH, Cammenga HK, Eysel W, Gmelin E, Hemminger W (1990) The temperature calibration of scanning calorimeters. Thermochim Acta 160:1–12

    Article  Google Scholar 

  25. Toda A, Hikosaka M (2005) Full deconvolution of the instrumental coefficients in scanning calorimeter of heat flux type. Thermochim Acta 436:15–25

    Article  Google Scholar 

  26. Gosh RC, Tanaka S, Toda A (2010) Application of a deconvolution method to construct aqueous phase diagram. Thermochim Acta 500:100–105

    Article  Google Scholar 

  27. Illers K-H (1974) Die Ermittlung des Schmelzpunkltes vonm kristallinen Polymeren mittels Wärmeflusskaporimetrie (DSC). Eur Polym J 40:911–916

    Article  Google Scholar 

  28. Toda A, Taguchi K, Sato K, Nozaki K, Maruyama M, Tagashira K, Konishi M (2013) Melting kinetics of it-polypropylene crystals over wide heating rates. J Therm Anal Calorim 113:1231–1237

    Article  Google Scholar 

  29. Vogel H (1921) Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Phys Z 22:645–646

    Google Scholar 

  30. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–355

    Article  Google Scholar 

  31. Tammann G, Hesse W (1926) Die Abhängigkeit der Viskosität von der Temperatur von unterkühlten Flüssigkeiten. Z Anorg Allg Chem 156:245–257

    Article  Google Scholar 

  32. Schawe JEK (2014) Vitrification in a wide cooling rate range: the relations between cooling rate, relaxation time, transition width, and fragility. J Chem Phys 141:184905

    Article  Google Scholar 

  33. Chua YZ, Schulz G, Shoifet E, Huth H, Zorn R, Schmelzer JWP, Schick C (2014) Glass transition cooperativity from broad band heat capacity spectroscopy. Colloid Polym Sci 292:1893–1904

    Article  Google Scholar 

  34. Gao S, Simon SL (2015) Measurement of the limiting fictive temperature over five decades of cooling and heating rates. Thermochim Acta 603:123–127

    Article  Google Scholar 

  35. Toda A, Konishi M (2014) An evaluation of thermal lags of fast-scan microchip DSC with polymer film samples. Thermochim Acta 589:262–269

    Article  Google Scholar 

  36. Shoifet E, Schulz G, Schick C (2015) Temperature modulated differential scanning calorimetry – extension to high and low frequencies. Thermochim Acta 603:227–236

    Article  Google Scholar 

  37. Schawe JEK (2012) Practical aspects of the Flash DSC 1: sample preparation for measurements of polymers. Mettler Toledo Therm Anal UserCom 36:17–24, www.mt.com/ta-usercoms

    Google Scholar 

  38. Chen H, Cebe P (2008) Quenching of polymer inside aluminum DSC pans: origin of an apparent artifact. Thermochim Acta 476:63–65

    Article  Google Scholar 

  39. Pogatscher S, Uggowitzer PJ, Löffler JF (2014) In-situ probing of metallic glass formation and crystallization upon heating and cooling via fast differential scanning calorimetry. Appl Phys Lett 104:251908

    Article  Google Scholar 

  40. Pogatscher S, Leutenegger D, Hagmann A, Uggowitzer PJ, Löffler JF (2014) Characterization of bulk metallic glasses via fast differential scanning calorimetry. Thermochim Acta 590:84–90

    Article  Google Scholar 

  41. Löffler JF, Kündig AA, Dalla Torre FH (2007) Rapid solidification and bulk metallic glasses – processing and properties. In: Groza JR, Shackelford JF, Lavernia EJ, Powers MT (eds) Materials processing handbook. CRC Press, Boca Raton, pp 1–44

    Google Scholar 

  42. Schroers J, Johnson WL (2002) Extremely low critical cooling rate measured on dispersed Pd 43Ni 10Cu 27P 20. Appl Phys Lett 80:2069–2071

    Article  Google Scholar 

  43. Wunderlich B (1995) The ATHAS database on heat capacities of polymers. Pure Appl Chem 67:1019–1026, http://www.springermaterials.com/docs/athas.html

    Google Scholar 

  44. Cebe P, Partlow BP, Kaplan DL, Wurm A, Zhuravlev E, Schick C (2015) Using flash DSC for determination the liquid state heat capacity of silk fibroin. Thermochim Acta 615:8–14

    Article  Google Scholar 

  45. Schawe JEK, Köhler A (2014) Using Flash DSC technology to verify structural changes. Kunststoffe Int 4:34–37

    Google Scholar 

  46. Koh YP, Grassia L, Simon SL (2015) Structural recovery of a single polystyrene thin film using nanocalorimetry: extending the aging time and aging temperature range. Thermochim Acta 603:135–141

    Article  Google Scholar 

  47. Wunderlich B Macromolecular physics. Academic Press, vol. 1 (1973) p 407 and vol. 3 (1980) p 30 ff

    Google Scholar 

  48. Schawe JEK (2007) An analysis of the meta stable structure of poly(ethylene terephthalate) by conventional DSC. Thermochim Acta 461:145–152

    Article  Google Scholar 

  49. Minakov AA, Mordvintsev DA, Tol R, Schick C (2006) Melting and reorganization of the crystalline fraction and relaxation of the rigid amorphous fraction of isotactic polystyrene on fast heating (30,000 K/min). Thermochim Acta 442:25–30

    Article  Google Scholar 

  50. Corradini P, Guerra G (1992) Polymorphism in polymers. Adv Polym Sci 100:183–217

    Article  Google Scholar 

  51. Stolte I, Cavallo D, Alfonso GC, Portale G, van Drongelen M, Androsch R (2014) Form I' crystal formation in random butene-1/propylene copolymers as revealed by real-time X-ray scattering using synchrotron radiation and fast scanning chip calorimetry. Eur Polym J 60:22–32

    Article  Google Scholar 

  52. van Drongelen M, Meijer-Vissers T, Cavallo D, Portale G, Vanden Poel G, Androsch R (2013) Microfocus wide-angle X-ray scattering of polymers crystallized in a fast scanning chip calorimeter. Thermochim Acta 563:33–37

    Article  Google Scholar 

  53. Janeschitz-Kriegl H (2010) Crystallization modalities in polymer melt processing. Springer, New York

    Book  Google Scholar 

  54. Zhuravlev E, Schmelzer JWP, Abyzov AS, Fokin VM, Androsch R, Schick C (2015) Experimental test of Tammann’s nuclei development approach in crystallization of macromolecules. Cryst Growth Des 15:786–798

    Article  Google Scholar 

  55. Schawe JEK, Vermeulen PA, van Drongelen M (2015) A new crystallization process in polypropylene highly filled with calcium carbonate. Colloid Polym Sci 293:1607–1614

    Article  Google Scholar 

  56. Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov AA, DiLorenzo ML, Schick C, Wunderlich B (2006) Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast Calorimetry. J Polym Sci Part B Polym Phys 44:1364–1377

    Article  Google Scholar 

  57. Silvestre C, Cimmino S, Duraccio D, Schick C (2007) Isothermal Crystallization of isotactic poly(propylene) studied by superfast calorimetry. Macromol Rapid Commun 28:871–881

    Article  Google Scholar 

  58. van Drongelen M, van Erp TB, Peters GWM (2012) Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: the influence of cooling rate and pressure. Polymer 53:4758–4769

    Article  Google Scholar 

  59. Natta G, Corradini P (1960) Structure properties of isotactic polypropylene. Nuovo Cimento Suppl 15:40–51

    Article  Google Scholar 

  60. Konishi T, Nishida K, Kanaya T (2006) Crystallization of isotactic polypropylene from prequenched mesomorphic phase. Macromolecules 39:8035–8040

    Article  Google Scholar 

  61. Corradini P, Petraccone V, DeRosa C, Guerra G (1986) On the structure of the quenched mesomorphic phase of isotactic polypropylene. Macromolecules 19:2699–2703

    Article  Google Scholar 

  62. Grebowicz J, Lau S-F, Wunderlich B (1984) The thermal properties of polypropylene. J Polym Sci Polym Symp 71:19–37

    Article  Google Scholar 

  63. Schawe JEK (2015) Analysis of non-isothermal crystallization during cooling and reorganization during heating of isotactic polypropylene by fast scanning DSC. Thermochim Acta 603:85–93

    Article  Google Scholar 

  64. Rhoades AM, Williams JL, Androsch R (2015) Crystallization kinetics of polyamide 66 at processing relevant cooling conditions and high supercooling. Thermochim Acta 603:103–109

    Article  Google Scholar 

  65. Schawe JEK (2015) The cooling rate dependence of the crystallinity at non-isothermal crystallization of polymers: a phenomenological model. J. Appl. Polym, Sci. doi:10.1002/app.42977

    Google Scholar 

  66. Vanden Poel G, Mathot VBF (2006) High-speed/high performance differential scanning calorimetry (HPer DSC): temperature calibration in the heating and cooling mode and minimization of thermal lag. Thermochim Acta 446:41–54

    Article  Google Scholar 

  67. Toda A (2015) Heating rate dependence of melting peak temperature examined by DSC of heat flux type. J Therm Anal Calorim 123:1795–1808

    Article  Google Scholar 

  68. Toda A, Yamada K, Hikosaka M (2002) Superheating of the melting kinetics in polymer crystals: a possible nucleation mechanism. Polymer 43:1667–1679

    Article  Google Scholar 

  69. Toda A, Kojima I, Hikosaka M (2008) Melting kinetics of polymer crystals with an entropic barrier. Macromolecules 41:120–127

    Article  Google Scholar 

  70. Susuki H, Grebowicz J, Wunderlich B (1983) The glass transition of polyoxymethylene. Br Polym J 15:1–3

    Google Scholar 

  71. Cheng SZD, Cao M-Y, Wunderlich B (1986) Glass transition and melting behavior of poly(oxy-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene)(PEEK).Macromolecules 19:1868–1876

    Article  Google Scholar 

  72. Schick C, Stoll B, Schawe J, Roger A, Gnoth M (1991) Dielectric and thermal relaxations in low molecular mass liquid crystals. Prog Colloid Polym Sci 85:148–158

    Article  Google Scholar 

  73. Zia Q, Mileva D, Androsch R (2008) Rigid amorphous fraction in isotactic polyethylene. Macromolecules 41:8095–8102

    Article  Google Scholar 

  74. Laws KJ, Gun B, Ferry M (2009) Influence of casting parameters on the critical casting size of bulk metallic glass. Metall Mater Trans A Phys Metall Mater Sci 40:2377–2387

    Article  Google Scholar 

  75. Kumar G, Tang HX, Schroers J (2009) Nanomoulding with amorphous metals. Nature 457:868–872

    Article  Google Scholar 

  76. Orava J, Greer AL, Gholipour B, Hewak DW, Smith CE (2012) Characterization of supercooled liquid Ge 2Sb 2Te 5 and its crystallization by ultrafast-heating calorimetry. Nat Mater 11:279–283

    Article  Google Scholar 

  77. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1705

    Article  Google Scholar 

  78. Ediger MD, Harrowell P, Yu L (2008) Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J Chem Phys 128:034709

    Article  Google Scholar 

  79. Löffler JF, Schroers J, Johnson WL (2000) Time-temperature-transformation diagram and microstructures of bulk glass forming Pd40Cu30Ni10P20. Appl Phys Lett 77:681–683

    Article  Google Scholar 

  80. Brillo J, Pommrich AI, Meyer A (2011) Relation between self-diffusion and viscosity in dense liquids: new experimental results from electrostatic levitation. Phys Rev Lett 107:165902

    Article  Google Scholar 

Download references

Acknowledgments

J.E.K. Schawe thanks Paul A. Vermeulen (University of Groningen) and Elke Hempel (Mettler-Toledo) for experimental support and his colleagues Rudolf Riesen, Melanie Nijman, Angela Hammer, Markus Schubnell, and Claus Wrana, for discussions and comments. S. Pogatscher thanks J. F. Löffler for initiating research on metallic glasses via Flash DSC at the Laboratory of Metal Physics and Technology, ETH Zurich during a postdoctoral stay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen E. K. Schawe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schawe, J.E.K., Pogatscher, S. (2016). Material Characterization by Fast Scanning Calorimetry: Practice and Applications. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_1

Download citation

Publish with us

Policies and ethics