Skip to main content
Log in

Measuring thermal conductivity of powders with differential scanning calorimetry

A simplified method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper simplifies a recently proposed method for measuring the thermal conductivity of powders using differential scanning calorimetry (DSC) (Sánchez-Rodríguez et al. in J Therm Anal Calorim 121:469–473, 2015). With this method, a crucible is filled with powder and a spherical metal reference is partially sunk into it. The thermal resistance between the metal and the crucible wall at the metal melting point is obtained from the DSC melting peak slope. In the simplified method outlined in this paper, a cylindrical pan is substituted for the original hemispherical crucible. The equivalence of both methods is demonstrated with alumina powder and commercial cylindrical crucibles of several sizes and aspect ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sánchez-Rodríguez D, López-Olmedo JP, Farjas J, Roura P. Determination of thermal conductivity of powders in different atmospheres by differential scanning calorimetry. J Therm Anal Calorim. 2015;121:469–73.

    Article  Google Scholar 

  2. Klemensiewicz Z. Thermal conductivity of powders. Nature. 1949;164:589.

    Article  CAS  Google Scholar 

  3. Mukasyan AS, Rogachev AS. Discrete reaction waves: gasless combustion of solid powder mixtures. Prog Energy Combust Sci. 2008;34:377–416.

    Article  CAS  Google Scholar 

  4. Goel NS, Geroc JS, Lehman GA. Simple model for heat conduction in heterogeneous materials and irregular boundaries. Int Comm Heat Mass Transf. 1992;19:519–30.

    Article  CAS  Google Scholar 

  5. Luikov AV, Shashkov AG, Vasiliev LL, Fraiman YE. Thermal conductivity of porous media. Int J Heat Mass Transf. 1968;11:117–40.

    Article  Google Scholar 

  6. Hardt AP, Phung PV. Propagation of gasless reactions in solids 1. Analytical study of exothermic intermetallic reaction rates. Combust Flame. 1973;21:77–89.

    Article  CAS  Google Scholar 

  7. Sanchez-Rodriguez D, Wada H, Yamaguchi S, Farjas J, Yahiro H. Self-propagating high-temperature synthesis of LaMO3 perovskite-type oxide using heteronuclearcyano metal complex precursors. J Alloys Comp. 2015;649:1291–9.

    Article  CAS  Google Scholar 

  8. Roura P, Farjas J, Eloussifi H, Carreras L, Ricart S, Puig T, Obradors X. Thermochim Acta. 2015;601:1–8.

    Article  CAS  Google Scholar 

  9. Huang L, El-Genk MS. Thermal conductivity measurements of alumina powders and molded Min-K in vacuum. Energy Convers Manag. 2001;42:599–612.

    Article  CAS  Google Scholar 

  10. Sanchez-Rodriguez D, Eloussifi H, Farjas J, Roura P, Dammak M. Thermal gradients in thermal analysis experiments: criterions to prevent inaccuracies when determining sample temperature and kinetic parameters. Thermochim Acta. 2014;589:37–46.

    Article  CAS  Google Scholar 

  11. Kubicar L, Vretenar V, Stofanik V, Bohac V. Hot-ball method for measuring thermal conductivity. Int J Thermophys. 2010;31:1904–18.

    Article  CAS  Google Scholar 

  12. Zheng X, Qiu L, Su G, Tang D, Liao Y, Chen Y. Thermal conductivity and thermal diffusivity of SiO2 nanopowder. J Nanopart Res. 2011;13:6887–93.

    Article  CAS  Google Scholar 

  13. Camirand CP. Measurement of thermal conductivity by differential scanning calorimetry. Thermochim Acta. 2004;417:1–4.

    Article  CAS  Google Scholar 

  14. Welty JR, Wicks CE, Wilson RE. Fundamentals of momentum, heat and mass transfer. New York: Wiley; 1984 (Ch. 18).

    Google Scholar 

  15. Ming Y, Purewal J, Liu D, Sudik A, Xu C, Yang J, Veenstra M, Rhodes K, Soltis R, Warner J, Gaab M, Müller U, Siegel DJ. Thermophysical properties of MOF-5 powders. Microporous Mesoporous Mater. 2014;185:235–44.

    Article  CAS  Google Scholar 

  16. Huang BL, Ni Z, Millward A, McGaughey AJH, Uher C, Kaviany M, Yaghi O. Thermal conductivity of a metal-organic framework (MOF-5): part II. Measurement. Int J Heat Mass Transf. 2007;50:405–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Spanish Programa Nacional de Materiales through project MAT2014-51778-C2-2-R. The authors wish to thank the University of Girona for the Ph.D. fellowship granted to Daniel Sánchez-Rodríguez and for the use of the thermal analysis facilities (Serveis Tècnics de Recerca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pere Roura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pujula, M., Sánchez-Rodríguez, D., Lopez-Olmedo, J.P. et al. Measuring thermal conductivity of powders with differential scanning calorimetry. J Therm Anal Calorim 125, 571–577 (2016). https://doi.org/10.1007/s10973-016-5274-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5274-4

Keywords

Navigation