Skip to main content
Log in

A catalytic adsorptive stripping voltammetric procedure for trace determination of Cr(VI) in natural samples containing high concentrations of humic substances

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple and fast catalytic adsorptive stripping voltammetric procedure for trace determination of Cr(VI) in natural samples containing high concentrations of humic substances has been developed. The procedure for chromium determination in the presence of DTPA and nitrates was employed as the initial method. In order to enhance the selectivity vs. Cr(III) the measurements were performed at 40°C. Interference from dissolved organic matter such as humic and fulvic acids was drastically decreased by adding Amberlite XAD-7 resin to the voltammetric cell before the deaeration step. The whole procedure was applied to a single cell, which allowed monitoring of the voltammetric scan. Optimum conditions for removing humic and fulvic acids due to their adsorption on XAD-7 resin were evaluated. The use of XAD-7 resin also minimize interferences from various cationic, anionic, and nonionic surfactants. The calibration graph for Cr(VI) for an accumulation time of 30 s was linear in the range 5 × 10−10 to 5 × 10−8 mol L−1. The relative standard deviation for determination of Cr(VI) at a concentration of 1 × 10−8 mol L−1 was 3.5% (n = 5). The detection limit estimated from 3 times the standard deviation for low Cr(VI) concentrations and an accumulation time of 30 s was about 1.3 × 10−10 mol L−1. The proposed method was successfully applied to Cr(VI) determination at trace levels in soil samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gómez V, Callao MP (2006) Trend Anal Chem 25:1006–1115

    Article  CAS  Google Scholar 

  2. Sugiyama M (1994) Environ Health Perspect 102:31–33

    Article  CAS  Google Scholar 

  3. Scindia YM, Pandey AK, Reddy AVR, Manohar SB (2004) Anal Chim Acta 515:311–321

    Article  CAS  Google Scholar 

  4. Pettine M, Capri S (2005) Anal Chim Acta 540:239–246

    Article  CAS  Google Scholar 

  5. Nan J, Yan XP (2005) Anal Chim Acta 536:207–212

    Article  CAS  Google Scholar 

  6. Anthemidis AN, Zachariadis GA, Stratis JS (2002) Talanta 58:831–840

    Article  CAS  Google Scholar 

  7. Li Y, Pradhan NK, Foley R, Low GKC (2002) Talanta 57:1143–1153

    Article  CAS  Google Scholar 

  8. Rahman GMM, Kingston HMS, Towns TG, Vitale RJ, Clay KR (2005) Anal Bioanal Chem 382:1111–1120

    Article  CAS  Google Scholar 

  9. Shen-Kay L, Harald B (1998) Fresenius J Anal Chem 360:545–549

    Article  Google Scholar 

  10. Sumida T, Ikenoue T, Hamadaa K, Saburadin A, Oshimab M, Motomizub S (2005) Talanta 68:388–393

    Article  CAS  Google Scholar 

  11. Li Y, Xue H (2001) Anal Chim Acta 448:121–134

    Article  CAS  Google Scholar 

  12. Jugade R, Joshi AP (2006) Anal Sci 22:571–574

    Article  CAS  Google Scholar 

  13. Elleouet C, Quentel F, Madec C (1992) Anal Chim Acta 257:301–308

    Article  CAS  Google Scholar 

  14. Grabarczyk M, Korolczuk M, Kaczmarek L (2006) Electroanalysis 18:2381–2384

    Article  CAS  Google Scholar 

  15. Korolczuk M, Grabarczyk M (2002) Microchem J 72:103–109

    Article  CAS  Google Scholar 

  16. Korolczuk M (2000) Anal Chim Acta 414:165–171

    Article  CAS  Google Scholar 

  17. Boussemart M, van den Berg CMG, Ghaddaf M (1992) Anal Chim Acta 262:103–115

    Article  CAS  Google Scholar 

  18. Bobrowski A, Baœ B, Dominik J, Niewiara E, Szaliñska E, Vignati D, Zarêbski J (2004) Talanta 63:1003–1012

    Article  CAS  Google Scholar 

  19. Scholz F, Lange B, Draheim M, Pelzer J (1990) Fresenius J Anal Chem 338:627–629

    Article  CAS  Google Scholar 

  20. Sorouradin MH, Hiraide M, Kim YS, Kawaguchi H (1993) Anal Chim Acta 281:191–195

    Article  CAS  Google Scholar 

  21. Fukushima M, Nakayasu K, Tanaka S, Nakamura H (1995) Anal Chim Acta 317:195–206

    Article  CAS  Google Scholar 

  22. Sule PA, Ingle Jr JD (1996) Anal Chim Acta 326:85–93

    Article  CAS  Google Scholar 

  23. Golimowski J, Valenta P, Nürnberg HW (1985) Fresenius Z Anal Chem 322:315–322

    Article  CAS  Google Scholar 

  24. Grabarczyk M, Korolczuk M (2003) Anal Bioanal Chem 376:1115–1118

    Article  CAS  Google Scholar 

  25. Town RM, Powell HKJ (1993) Anal Chim Acta 271:195–202

    Article  CAS  Google Scholar 

  26. Lepane V (1999) J Chromatogr A 845:329–335

    Article  CAS  Google Scholar 

  27. Esteves VI, Cordeiro NMA, da Costa Duarte A (1995) Mar Chem 51:61–66

    Article  CAS  Google Scholar 

  28. Janos P (2003) J Chromatogr A 983:1–18

    Article  CAS  Google Scholar 

  29. Langlera LM, Battaglia G, van den Berg CMG (2007) Anal Chim Acta 599:58–66

    Article  CAS  Google Scholar 

  30. Yalcin S, Apak R (2004) Anal Chim Acta 505:25–35

    Article  CAS  Google Scholar 

  31. Saha B, Gill RJ, Bailey DG, Kabay N, Arda M (2004) React Funct Polym 60:223–244

    Article  CAS  Google Scholar 

  32. Filik H, Doðutan M, Apak R (2003) Anal Bioanal Chem 376:928–933

    Article  CAS  Google Scholar 

  33. McDonald S, Bishop AG, Prenzler PD, Robards K (2004) Anal Chim Acta 527:105–124

    Article  CAS  Google Scholar 

  34. Zhilin DM, Kopplin PS, Perminova IV (2004) Environ Chem Lett 2:141–145

    Article  CAS  Google Scholar 

  35. Wittbrodt PR, Palmer CD (1996) Eur J Soil Sci 47:151–162

    Article  Google Scholar 

  36. Kotas J, Stasicka Z (2000) Environ Pollut 107:263–283

    Article  CAS  Google Scholar 

  37. Marshall SJ, House WA, Russell NJ, White GF (1998) Colloid Surf 144:127–137

    Article  CAS  Google Scholar 

  38. Csiky I, Marko-Vagra G, Jönsson JÅ (1985) Anal Chim Acta 178:307–312

    Article  CAS  Google Scholar 

  39. Lu XQ, Hanna JV, Johnson WD (2000) Appl Geochem 15:1019–1033

    Article  CAS  Google Scholar 

  40. Korolczuk M, Grabarczyk M (2005) Talanta 66:1320–1325

    Article  CAS  Google Scholar 

  41. James BR (1994) Environ Qual 23:227–233

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Grabarczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabarczyk, M. A catalytic adsorptive stripping voltammetric procedure for trace determination of Cr(VI) in natural samples containing high concentrations of humic substances. Anal Bioanal Chem 390, 979–986 (2008). https://doi.org/10.1007/s00216-007-1733-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1733-x

Keywords

Navigation