Skip to main content
Log in

Speciation analysis of chromium by separation on a 5-palmitoyl oxine-functionalized XAD-2 resin and spectrophotometric determination with diphenylcarbazide

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The method developed in this work for the separation and preconcentration of Cr(III) is based on its retention by an Amberlite XAD-2 copolymer resin functionalized with 5-palmitoyl-8-hydroxyquinoline (oxine), abbreviated XAD-POx, with the ligand covalently bound to the copolymer. Cr(III) sorption was quantitative within the pH range 4.5–7.0 and Cr(VI) was not retained. The Cr(III) held by the resin column was eluted with a hot solution of H2O2 in pH≥9.0 aqueous NH3–NH4Cl buffer, and Cr oxidized to CrO4 2− was rejected by the chelating cation-exchanger column. Any Cr(VI) originally present with Cr(III) could be reduced with an acidic solution of H2O2, and retained by the column yielding total Cr results, Cr(VI) being determined from the difference. The resin showed a maximal preconcentration factor of 60 for Cr(III), the LOD and LOQ being 9.3 and 30.1 nmol L−1, respectively. The developed preconcentration-speciation analysis was finished with a diphenylcarbazide (DPC) spectrophotometric procedure suitable for conventional laboratories. The resin showed excellent salt tolerance, enabling Cr analysis in seawater, and was stable over extended use. All the interferents of this procedure that normally occur in an electroplating effluent, a blended coal CRM, and a standard steel sample could be removed by the recommended procedure, by use of partial and total selectivity at the adsorption and desorption stages, respectively, enabling preconcentration and colorimetric determination of chromium in various complex matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Marques MJ, Salvador A, Morales-Rubio A, De la Guardia M (2000) Fresenius J Anal Chem 367:601–613

    Article  CAS  PubMed  Google Scholar 

  2. Demirata B, Tor I, Filik H, Afşar H (1996) Fresenius J Anal Chem 356:375–377

    CAS  Google Scholar 

  3. Demirata B (2001) Microchim Acta 136:143–146

    Article  CAS  Google Scholar 

  4. Cox AG, Cook I, McLeod CW (1985) Analyst 110:331–333

    CAS  Google Scholar 

  5. Sperling M, Yin XF, Welz B (1992) Analyst 117:629–635

    CAS  PubMed  Google Scholar 

  6. Cespon-Romero RM, Yebra-Biurrun MC, Bermejo-Barrera MP (1996) Anal Chim Acta 327:37–45

    CAS  Google Scholar 

  7. Pasullean B, Davidson CM, Littlejohn D (1995) J Anal At Spectrom 10:241–246

    CAS  Google Scholar 

  8. Isshiki K, Sohrin Y, Karatani H, Nakayama E (1989) Anal Chim Acta 224:55–64

    CAS  Google Scholar 

  9. Brunfelt OA, Steinnes E (1967) Anal Chem 39:833–834

    CAS  Google Scholar 

  10. Shigetomi Y, Hatamoto T, Nagoshi K, Yamashige T (1976) Nippon Kagaku Kaishi 4:619–622

    Google Scholar 

  11. Pankow JF, Janauer GE (1974) Anal Chim Acta 69:97–104

    Article  CAS  PubMed  Google Scholar 

  12. Yamashige T, Izawa H, Shigetomi Y (1975) Bull Chem Soc Jpn 48:715–716

    CAS  Google Scholar 

  13. Mondal BC, Das D, Das AK (2002) Talanta 56:145–152

    Article  CAS  Google Scholar 

  14. Filik H, Apak R (1994) Sep Sci Technol 29:2047–2066

    CAS  Google Scholar 

  15. Filik H, Apak R (1996) Sep Sci Technol 31:241–258

    CAS  Google Scholar 

  16. Filik H, Apak R (1998) Sep Sci Technol 33:1123–1134

    CAS  Google Scholar 

  17. Doğutan M, Filik H, Demirci S, Apak R (2000) Sep Sci Technol 35:2083–2096

    Article  Google Scholar 

  18. Lyman J, Fleming RH (1940) J Mar Res 3:134

    CAS  Google Scholar 

  19. Hansen AZ (1952) Z Anal Chem 134:427

    CAS  Google Scholar 

  20. Friedman HA (1960) Anal Chem 32:137

    CAS  Google Scholar 

  21. Ajmal M, Rao RAK, Ahmad R, Ahmad J (2001) J Hazard Mater B87:127–131

    Article  Google Scholar 

  22. Ranganathan K (2000) Bioresour Technol 73:99–103

    Article  CAS  Google Scholar 

  23. Filik H (2002) Anal Lett 35:881–894

    Article  CAS  Google Scholar 

  24. Yalçın S, Apak R, Hızal J, Afşar H (2001) Sep Sci Technol 36:2181–2196

    Article  Google Scholar 

  25. Riley JP, Skirrow G (1975) Chemical Oceanography, 2nd edn, vol 3. Academic Press, p 347

  26. Llobat-Estelles M, Mauri-Aucejo AR, Lopez-Catalan MD (2001) Fresenius J Anal Chem 371:358–363

    Article  CAS  PubMed  Google Scholar 

  27. Isshiki K, Sohrin Y, Karatani H, Nakayama E (1989) Anal Chim Acta 224:55–64

    CAS  Google Scholar 

  28. Isshiki K, Nakayama E (2001) Anal Sci 17 (Suppl):i1571–i1574

  29. Mena ML, Morales-Rubio A, Cox AG, McLeod CW, Quevauviller P (1995) Quim Anal 14:164–168

    Google Scholar 

  30. Marques MJ, Morales-Rubio A, Salvador A, De la Guardia M (2001) Talanta 53:1229–1239

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reşat Apak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filik, H., Doğutan, M. & Apak, R. Speciation analysis of chromium by separation on a 5-palmitoyl oxine-functionalized XAD-2 resin and spectrophotometric determination with diphenylcarbazide. Anal Bioanal Chem 376, 928–933 (2003). https://doi.org/10.1007/s00216-003-2006-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2006-y

Keywords

Navigation