Skip to main content
Log in

Simultaneous Voltammetric Determination of Cd2+, Pb2+, and Hg2+ Ions Using Aminosepiolite-Coated Glassy Carbon Electrode: Optimization of Detection Parameters via Response Surface Methodology

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Adsorptive stripping voltammetry using a glassy carbon electrode modified by a film of aminosepiolite was utilized for simultaneous pre-concentration and trace detection of cadmium, lead, and mercury ions in aqueous solution. The modified sepiolite exploited as electrode material was obtained by grafting on its surface of [(3-(2-aminoethylamino)propyl)]trimethoxysilane (AEPTMS). The results demonstrated that the amine groups on sepiolite efficiently affected the voltammetric detection of heavy metals. The full factorial design matrix and response surface methodology were applied in designing experiments, to determine the optimal conditions and to evaluate their mutual interactions. The high values of adjusted R2 obtained of the fitted model show that the experiments data were well explained by the model, which then allowed to acquire optimum parameters for the electroanalysis and detection of the analytes by differential pulse voltammetry. At pH 6.5 of accumulating medium, with an electrolysis potential of –0.9 V and in the concentration range of 10−8 M to 10−9 M, calibration plots were obtained. The limits of detection (3Sd/m) were 8.689 × 10−10 M, 8.197 × 10−10 M, and 8.099 × 10−10 M, respectively, for Cd2+, Pb2+, and Hg2+ ions. The interference effect of several cations and anions on the response of the analytes was also evaluated, and finally, the sensor was applied to the simultaneous detection of metal ions in tap water with satisfactory recovery rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tonle IK, Ngameni E, Tchieno MMF, Walcarius A. J Solid State Electrochem. 2015;19:1949.

    Article  CAS  Google Scholar 

  2. Zhang S, He P, Lei W, Zhang G. J Electroanal Chem. 2014;724:29.

    Article  CAS  Google Scholar 

  3. Azad UP, Turllapati S, Rastogi PK, Ganesan V. Electrochim Acta. 2014;127:193.

    Article  CAS  Google Scholar 

  4. Colilla M, Darder M, Aranda P, Ruiz-Hitzky E. Chem Mater. 2005;17:708.

    Article  CAS  Google Scholar 

  5. Ozkan D, Kerman K, Meric B, Kara P, Demirkan H, Polverejan M, Pinnavaia TJ, Ozsoz M. Chem Mater. 2002;14:1755.

    Article  CAS  Google Scholar 

  6. Filho NLD. do Carmo DR. Talanta. 2006;68:919.

    Article  Google Scholar 

  7. Dong YP, Ding Y, Zhou Y, Chen J, Wang CM. J Electroanal Chem. 2014;717:206.

    Article  Google Scholar 

  8. Filho NLD, Okajima GL, Pires G, Costa RM, do Carmo R, Rosa AH. Port Electrochim Acta. 2008;26:163.

    Article  Google Scholar 

  9. Nguelo BB, Kenne DG, Tonle IK, Ngameni E, Detellier C. Electroanalysis. 2018;30:543.

    Article  CAS  Google Scholar 

  10. Tonle IK, Letaief S, Ngameni E, Walcarius A, Detellier C. Electroanalysis. 2011;23:245.

    Article  CAS  Google Scholar 

  11. Jieumboue AT, Ngameni E, Tonle IK, Walcarius A. Chem Mater. 2009;21:4111.

    Article  Google Scholar 

  12. Tonle IK, Ngameni E, Walcarius A. Sens Actuators B Chem. 2005;110:195.

    Article  CAS  Google Scholar 

  13. Background document for development of WHO. Guidelines for drinking-water quality (2011). WHO/SDE/WSH/03.04/09/Rev/1.

  14. Background document for development of WHO Guidelines for Drinking-Water Quality (2005). -9WHO/SDE/WSH/05.08/10.

  15. Durkalec M, Szkoda J, Kolacz R, Opalinski S, Nawrocka A, Zmudzki J. Int J Environ Res. 2015;9:205.

    CAS  Google Scholar 

  16. Evans EH, Day JA, Palmer CD, Price WJ, Smith CMM, Tyson JF. J Anal Atmos Spectrom. 2005;2:562.

    Article  Google Scholar 

  17. Da-Col JA, Domene SMA, Pereira-Filho ER. Food Anal Methods. 2009;2:110.

    Article  Google Scholar 

  18. Sen I, Shandil A, Shrivastava VS. Adv Appl Sci Res. 2011;2:161.

    CAS  Google Scholar 

  19. Lachas H, Richaud R, Herod AA, Dugwell DR, Kandiyoti R, Jarvis KE. Analyst. 1999;124:177.

    Article  CAS  Google Scholar 

  20. Okcu F, Ertas FN, Gokcul HI, Tural H. Turk J Chem. 2005;29:355.

    CAS  Google Scholar 

  21. Siriangkhawut W, Pencharee S, Grudpan K, Jakmunee J. Talanta. 2009;79:1118.

    Article  CAS  Google Scholar 

  22. Wang J. Fresenius’ J Anal Chem. 1990;337:508.

    Article  CAS  Google Scholar 

  23. Weuster-Botz D. J Biosci Bioeng. 2000;90:473.

    Article  CAS  Google Scholar 

  24. Ymele E, Jiokeng ZLS, Tchieno MMF, Tonle IK. Adv Mater Sci. 2017;2:1.

    Article  Google Scholar 

  25. Ensafi AA, Khayamian T, Atabati M. Talanta. 2003;59:727.

    Article  CAS  Google Scholar 

  26. Gomez CG, Drogui P, Zaviska F, Seyhi B, Gortares-Moroyoqui P, Buelna G, Niera-Saenz C, Estrada-Alvardo M, Ulloa-Mercado RG. J Electroanal Chem. 2014;732:1.

    Article  Google Scholar 

  27. Nde BD, Siriyabe M, Ahmed MM, Fon-Abi C, Paul Z, George NE, Kapseu C. J Chem Biol Phys Sci. 2014;3261.

  28. Nde BD, Fon-Abi C, Tenin D, Kapseu C, Tchiegang C. Food Bioprocess Technol. 2012;5:108.

    Article  Google Scholar 

  29. Yilmaz S, Ozturk B, Ozdemir D, Eroglu AE, Ertas FN. Turk J Chem. 2013;37:316.

    Article  CAS  Google Scholar 

  30. Mannan S, Fakhru’l-Razi A, Alam MZ. J Environ Sci. 2007;19:23.

    Article  CAS  Google Scholar 

  31. Heidari A, Younesi H, Mehraban Z. Chem Eng J. 2009;153:70.

    Article  CAS  Google Scholar 

  32. Benhamou A, Baudu M, Derriche Z, Basly JP. J Hazard Mater. 2009;171:1001.

    Article  CAS  Google Scholar 

  33. Ansanay-Alex S, Lomenech C, Hurel C, Marmier N. Int J Nanotechnol. 2012;9:204.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The World Academy of Sciences (TWAS) for the advancement of science in developing countries (Research Grant No. 16-515 RG/CHE/AF/AC_G-FR3240293302 allowed to I. K. Tonle).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignas Kenfack Tonlé.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 284 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ymélé, E., Jiokeng, S.L.Z., Nde, D.B. et al. Simultaneous Voltammetric Determination of Cd2+, Pb2+, and Hg2+ Ions Using Aminosepiolite-Coated Glassy Carbon Electrode: Optimization of Detection Parameters via Response Surface Methodology. J. Anal. Test. 3, 295–305 (2019). https://doi.org/10.1007/s41664-019-00086-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-019-00086-z

Keywords

Navigation