Skip to main content
Log in

Modeling the effects of Si-X (X = F, Cl) bonds on the chemical and electronic properties of Si-surface terminated porous 3C-SiC

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Porous silicon carbide offers a great potential as a sensor material for applications in medicine and energetics; however, the theoretical chemical characterization of its surface is almost nonexistent, and a correct understanding of its chemical properties could lead to the development of better applications of this nanostructure. Hence, a study of the effects of different passivation agents on the structure and electronic properties of porous silicon carbide by means of density functional theory and the supercell technique was developed. The porous structures were modeled by removing columns of atoms of an otherwise perfect SiC crystal in the [001] direction, so that the porous structure exhibits a surface exclusively composed of Si atoms (Si-rich) using different surface passivation agents, such as hydrogen (H), fluoride (F) and chloride (Cl). The results demonstrate that all of the passivation schemes exhibit an irregular band gap energy evolution due to a hybridization change of the surface. The structural analysis shows a great dependence of the bond characteristics on the electronegativity of the bonded atoms, and all of the structural and electronic changes could be explained due to steric effects. These results could be important in the characterization of pSiC because they provide insight into the most stable surface configurations and their electronic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Garralaga Rojas E, Hensen J, Baur C, Brendel R (2011) Sintering and reorganization of electrochemically etched mesoporous germanium layers in various atmospheres. Sol Energy Mater Sol Cells 95(1):292–295. doi:10.1016/j.solmat.2010.04.042

    Article  CAS  Google Scholar 

  2. Lima FAS, Vasconcelos IF, Lira-Cantu M (2015) Electrochemically synthesized mesoporous thin films of ZnO for highly efficient dye sensitized solar cells. Ceram Int 41(8):9314–9320. doi:10.1016/j.ceramint.2015.03.271

    Article  CAS  Google Scholar 

  3. Ge M, Fang X, Rong J, Zhou C (2013) Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology 24(42):422001. doi:10.1088/0957-4484/24/42/422001

    Article  CAS  Google Scholar 

  4. Kim M, Oh I, Kim J (2015) Effects of different electrolytes on the electrochemical and dynamic behavior of electric double layer capacitors based on a porous silicon carbide electrode. Phys Chem Chem Phys 17(25):16367–16374. doi:10.1039/C5CP01728A

    Article  CAS  Google Scholar 

  5. Lee S-H, Yun S-M, Kim S, Park S-J, Lee Y-S (2010) Characterization of nanoporous β-SiC fiber complex prepared by electrospinning and carbothermal reduction. Res Chem Intermed 36(6–7):731–742. doi:10.1007/s11164-010-0175-9

    Article  CAS  Google Scholar 

  6. Naderi N, Hashim MR, Saron KMA, Rouhi J (2013) Enhanced optical performance of electrochemically etched porous silicon carbide. Semicond Sci Technol 28(2):025011. doi:10.1088/0268-1242/28/2/025011

    Article  Google Scholar 

  7. Kim K-S, Chung G-S (2011) Fast response hydrogen sensors based on palladium and platinum/porous 3C-SiC Schottky diodes. Sens Actuators, B 160(1):1232–1236. doi:10.1016/j.snb.2011.09.054

    Article  CAS  Google Scholar 

  8. Naderi N, Hashim MR (2013) Visible-blind ultraviolet photodetectors on porous silicon carbide substrates. Mater Res Bull 48(6):2406–2408. doi:10.1016/j.materresbull.2013.02.078

    Article  CAS  Google Scholar 

  9. Kim K-S, Chung G-S (2011) Characterization of porous cubic silicon carbide deposited with Pd and Pt nanoparticles as a hydrogen sensor. Sens Actuators, B 157(2):482–487. doi:10.1016/j.snb.2011.05.004

    Article  CAS  Google Scholar 

  10. Trejo A, Cruz-Irisson M (2013) Computational modeling of the size effects on the optical vibrational modes of H-terminated Ge nanostructures. Molecules 18(4):4776. doi:10.3390/molecules18044776

    Article  CAS  Google Scholar 

  11. Calvino M, Trejo A, Iturrios MI, Crisóstomo MC, Carvajal E, Cruz-Irisson M (2014) DFT study of the electronic structure of cubic-SiC nanopores with a C-terminated surface. Journal of Nanomaterials 2014:7. doi:10.1155/2014/471351

    Article  Google Scholar 

  12. Shin W, Seo W, Takai O, Koumoto K (1998) Surface chemistry of porous silicon carbide. J Electron Mater 27(4):304–307. doi:10.1007/s11664-998-0405-8

    Article  CAS  Google Scholar 

  13. Shishkin Y, Choyke WJ, Devaty RP (2004) Photoelectrochemical etching of n-type 4H silicon carbide. J Appl Phys 96(4):2311–2322. doi:10.1063/1.1768612

    Article  CAS  Google Scholar 

  14. Fang C, Föll H, Carstensen J (2006) Electrochemical pore etching in germanium. J Electroanal Chem 589(2):259–288. doi:10.1016/j.jelechem.2006.02.021

    Article  CAS  Google Scholar 

  15. Miranda A, Trejo A, Canadell E, Rurali R, Cruz-Irisson M (2012) Interconnection effects on the electronic and optical properties of Ge nanostructures: a semi-empirical approach. Physica E 44(7–8):1230–1235. doi:10.1016/j.physe.2012.01.017

    Article  CAS  Google Scholar 

  16. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B 59(11):7413–7421. doi:10.1103/PhysRevB.59.7413

    Article  Google Scholar 

  17. Hamann DR, Schlüter M, Chiang C (1979) Norm-conserving pseudopotentials. Phys Rev Lett 43(20):1494–1497. doi:10.1103/PhysRevLett.43.1494

    Article  CAS  Google Scholar 

  18. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570. doi:10.1524/zkri.220.5.567.65075

    CAS  Google Scholar 

  19. Pfrommer BG, Côté M, Louie SG, Cohen ML (1997) Relaxation of crystals with the quasi-Newton method. J Comput Phys 131(1):233–240. doi:10.1006/jcph.1996.5612

    Article  CAS  Google Scholar 

  20. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192. doi:10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  21. Tossell JA (1987) Quantum mechanical studies of Si–O and Si–F bonds in molecules and minerals. Phys Chem Miner 14(4):320–326. doi:10.1007/BF00309804

    Article  CAS  Google Scholar 

  22. Shaik S, Danovich D, Silvi B, Lauvergnat DL, Hiberty PC (2005) Charge-shift bonding—a class of electron-pair bonds that emerges from valence bond theory and is supported by the electron localization function approach. Chem Eur J 11(21):6358–6371. doi:10.1002/chem.200500265

    Article  CAS  Google Scholar 

  23. Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) The nature and geometry of intermolecular interactions between halogens and oxygen or nitrogen. J Am Chem Soc 118(13):3108–3116. doi:10.1021/ja953281x

    Article  CAS  Google Scholar 

  24. Gillespie RJ, Robinson EA (2005) Models of molecular geometry. Chem Soc Rev 34(5):396–407. doi:10.1039/B405359C

    Article  CAS  Google Scholar 

  25. Wang W, Wong N-B, Zheng W, Tian A (2004) Theoretical study on the blueshifting halogen bond. J Phys Chem A 108(10):1799–1805. doi:10.1021/jp036769q

    Article  CAS  Google Scholar 

  26. Lauvergnat D, Hiberty PC, Danovich D, Shaik S (1996) Comparison of C–Cl and Si–Cl bonds. A valence bond study. J Phys Chem 100(14):5715–5720. doi:10.1021/jp960145l

    Article  CAS  Google Scholar 

  27. Lambert JB, Wang G-T (1988) Participation of beta carbon-silicon bonds in the development of positive charge in five-membered rings. J Phys Org Chem 1(3):169–178. doi:10.1002/poc.610010307

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Project 252749 from CONACyT and multidisciplinary Projects SIP-IPN 2014-1640 y 2014-1641 from InstitutoPolitécnico Nacional.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Trejo.

Additional information

Published as part of the special collection of articles “CHITEL 2015 - Torino - Italy”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvino, M., Trejo, A., Crisóstomo, M.C. et al. Modeling the effects of Si-X (X = F, Cl) bonds on the chemical and electronic properties of Si-surface terminated porous 3C-SiC. Theor Chem Acc 135, 104 (2016). https://doi.org/10.1007/s00214-016-1861-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1861-5

Keywords

Navigation