Skip to main content
Log in

Combined effect of Stone–Wales defects and titanium doping on electronic properties of a silicon carbide monolayer: DFT

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

First-principles calculations within the density functional theory (DFT) were employed to study the effect of Stone–Wales defects and doping of a single titanium atom on the electronic properties of a two-dimensional hexagonal silicon carbide monolayer. The effect of Stone–Wales defects, as well as titanium doping, was investigated individually and jointly. Our results show that the electronic properties of the silicon carbide monolayer can be engineered by applying the two defects individually. While the Stone–Wales defect can reduce the band gap by about 50%, the doping effect on the band gap crucially depends on the replaced atom in the host structure. In other words, when the carbon atom was replaced by the titanium atom, it is found that the band gap can be narrowed down by about 78%. However, the obtained band gap values were reduced by 30% upon replacing the silicon atom with the titanium atom. Furthermore, the combination of Stone–Wales defects and titanium doping significantly impacts the electronic properties of silicon carbide monolayer. This impact depends on the substituted atom and its location in the host structure. Interestingly, at specific sites, the combined effect can narrow down the band gap of the silicon carbide by about 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Chabi, S., Kadel, K.: Two-dimensional silicon carbide: emerging direct band gap semiconductor. Nanomater. (Basel) 10(11), 2226 (2020)

    Article  Google Scholar 

  2. Chaves, A., Azadani, J.G., Alsalman, H., da Costa, D.R., Frisenda, R., Chaves, A.J., Song, S.H., Kim, Y.D., He, D., Zhou, J., Castellanos-Gomez, A., Peeters, F.M., Liu, Z., Hinkle, C.L., Oh, S.-H., Ye, P.D., Koester, S.J., Lee, Y.H., Avouris, P., Wang, X., Low, T.: Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4(1), 1–21 (2020)

    Article  Google Scholar 

  3. Cui, C., Xue, F., Hu, W.-J., Li, L.-J.: Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2(1), 1–14 (2018)

    Google Scholar 

  4. Song, X., Hu, J., Zeng, H.: Two-dimensional semiconductors: recent progress and future perspectives. J. Mater. Chem. C 1(17), 2952–2969 (2013)

    Article  Google Scholar 

  5. Sun, L., Li, Y., Li, Z., Li, Q., Zhou, Z., Chen, Z., Yang, J., Hou, J.G.: Electronic structures of SiC nanoribbons. J. Chem. Phys. 129(17), 174114 (2008)

    Article  Google Scholar 

  6. Gutzler, R., Schön, J.C.: Two-dimensional Silicon-Carbon Compounds: Structure Prediction and Band Structures. Z. Anorg. Allg. Chem. 643(21), 1368–1373 (2017)

    Article  Google Scholar 

  7. Lü, T.-Y., Liao, X.-X., Wang, H.-Q., Zheng, J.-C.: Tuning the indirect–direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: a quasiparticle GW study. J. Mater. Chem. 22(19), 10062–10068 (2012)

    Article  Google Scholar 

  8. Talla, J.A., Ahmad, M.S.: Structural and electronic properties of rippled graphene monolayer: density functional theory. J. Electr. Mater. 51(5), 2464–2474 (2022)

    Article  Google Scholar 

  9. Şahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R.T., Ciraci, S.: Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys. Rev. B 80(15), 155453 (2009)

    Article  Google Scholar 

  10. Li, Z., Yao, Y., Wang, T., Lu, K., Zhang, P., Zhang, W., Yin, J.: Electronic properties of two-dimensional IV–V group materials from density functional theory. Appl. Surf. Sci. 496, 143730 (2019)

    Article  Google Scholar 

  11. Li, J., Zhou, Q., Ju, W., Zhang, Q., Liu, Y.: Effect of Stone-Wales defects and transition-metal dopants on arsenene: a DFT study. RSC Adv. 9(33), 19048–19056 (2019)

    Article  Google Scholar 

  12. Lin, X., Lin, S., Xu, Y., Hakro, A.A., Hasan, T., Zhang, B., Yu, B., Luo, J., Li, E., Chen, H.: Ab initio study of electronic and optical behavior of two-dimensional silicon carbide. J. Mater. Chem. C 1(11), 2131–2135 (2013)

    Article  Google Scholar 

  13. Chabi, S., Chang, H., Xia, Y., Zhu, Y.: From graphene to silicon carbide: ultrathin silicon carbide flakes. Nanotechnology 27(7), 075602 (2016)

    Article  Google Scholar 

  14. Susi, T., Skakalova, V., Mittelberger, A., Kotrusz, P., Hulman, M., Pennycook, T.J., Mangler, C., Kotakoski, J., Meyer, J.C.: Computational insights and the observation of SiC nanograin assembly: towards 2D silicon carbide. Sci. Rep. 7(1), 1–9 (2017)

    Article  Google Scholar 

  15. Sun, L., Wang, B., Wang, Y.: A novel silicon carbide nanosheet for high-performance humidity sensor. Adv. Mater. Interfaces 5(6), 1701300 (2018)

    Article  Google Scholar 

  16. Sun, L., Han, C., Wu, N., Wang, B., Wang, Y.: High temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition. RSC Adv. 8(25), 13697–13707 (2018)

    Article  Google Scholar 

  17. Sun, L., Wang, B., Wang, Y.: A Schottky-junction-based platinum nanoclusters@silicon carbide nanosheet as long-term stable hydrogen sensors. Appl. Surf. Science 473, 641–648 (2019)

    Article  Google Scholar 

  18. Farmanzadeh, D., Ardehjani, N.A.: Adsorption of O3, SO2 and NO2 molecules on the surface of pure and Fe-doped silicon carbide nanosheets: a computational study. Appl. Surf. Sci. 462, 685–692 (2018)

    Article  Google Scholar 

  19. Zhao, M., Zhang, R.: Two-dimensional topological insulators with binary honeycomb lattices:SiC3siligraphene and its analogs. Phys. Rev. B 89(19), 195427 (2014)

    Article  Google Scholar 

  20. Lin, S.S.: Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 116(6), 3951–3955 (2012)

    Article  Google Scholar 

  21. Bhatta, R., Sigdel, K.R., Adhikari, R., Sharma, S.B.: Strain Induced Electronic and Optical Properties of 2D Silicon Carbide Monolayer Using Density Functional Theory. J. Nepal Phys. Soc. 7(1), 60–65 (2021)

    Article  Google Scholar 

  22. Abuokaz, M., Al-khaza’leh, K., Talla, J.A.: Influence of Stone-Wales defects on the structural and electronic properties of double-walled boron nitride nanotubes: density functional theory. Appl. Phys. A 128(1), 1–10 (2021)

    Google Scholar 

  23. Talla, J.A.: Band gap opening of doped graphene stone wales defects: simulation study. Semiconductors 54(1), 40–45 (2020)

    Article  Google Scholar 

  24. Talla, J.A., Alsalieby, A.F.: Effect of uniaxial tensile strength on the electrical properties of doped carbon nanotubes: density functional theory. Chin. J. Phys. 59, 418–425 (2019)

    Article  Google Scholar 

  25. Talla, J.A.: Band gap tuning of defective silicon carbide nanotubes under external electric field: density functional theory. Phys. Lett. A 383(17), 2076–2081 (2019)

    Article  Google Scholar 

  26. Talla, J.A.: Electronic properties of silicon carbide nanotube with Stone Wales defects under uniaxial pressure: a computational study. Comput. Condens. Matter 19, e00378 (2019)

    Article  Google Scholar 

  27. Al-Khaza’leh, K., Almahmoud, E.A., Talla, J.A.: Glucose/Fe-doped C70 fullerene hybrid biosensor: theoretical study. Fuller. Nanotubes Carbon Nanostruct. 28(9), 761–768 (2020)

    Article  Google Scholar 

  28. Omari, R., Almahmoud, E., Talla, J.A., Al-Khaza’leh, K., Ghozlan, A., Al-Diabat, A.: Influence of substitutional doping on the electronic properties of carbon nanotubes with Stone Wales defects: density functional calculations. Fuller. Nanotubes Carbon Nanostruct. 28(10), 828–840 (2020)

    Article  Google Scholar 

  29. Almahmoud, E.A., Talla, J.A., Abu-Farsakh, H.: Electronic properties of defective boron nitride mono-sheets under the influence of an external electric field. Semicond. Sci. Technol. 35(2), 025014 (2020)

    Article  Google Scholar 

  30. Talla, J.A.: Pressure induced phase transition and band gap controlling in defective graphene mono-sheet: Density functional theory. Mater. Res. Express 6(11), 115012 (2019)

    Article  Google Scholar 

  31. Nairata, M., Talla, J.: Electronic properties of aluminum doped carbon nanotubes with stone wales defects: density functional theory. Phys. Solid State 61(10), 1896–1903 (2019)

    Article  Google Scholar 

  32. Almahmoud, E.A., Talla, J.A., Abu-Farsakh, H.: Influence of uniaxial strain on the electronic properties of doped graphene mono-sheets: a theoretical study. Mater. Res. Express 6(11), 115617 (2019)

    Article  Google Scholar 

  33. Almahmoud, E., Talla, J.A.: Band gap tuning in carbon doped boron nitride mono sheet with Stone-Wales defect: a simulation study. Mater. Res. Express 6(10), 105038 (2019)

    Article  Google Scholar 

  34. Brook, A.G., Nyburg, S.C., Abdesaken, F., Gutekunst, B., Gutekunst, G., Krishna, R., Kallury, M.R., Poon, Y.C., Chang, Y.M., Winnie, W.N.: Stable solid silaethylenes. J. Am. Chem. Soc. 104(21), 5667–5672 (2002)

    Article  Google Scholar 

  35. Igarashi, M., Ichinohe, M., Sekiguchi, A.: Air-stable disilacyclopropene with a SI=C bond and its conversion to disilacyclopropenylium ion: silicon-carbon hybrid 2pi-electron systems. J. Am. Chem. Soc. 129(42), 12660–12661 (2007)

    Article  Google Scholar 

  36. Tokitoh, N., Wakita, K., Okazaki, R., Nagase, S., von Ragué Schleyer, P., Jiao, H.: A stable neutral silaaromatic compound, 2-{2,4,6-Tris[bis(trimethylsilyl)methyl]phenyl}- 2-silanaphthalene. J. Am. Chem. Soc. 119(29), 6951–6952 (1997)

    Article  Google Scholar 

  37. Leigh, W.J., Kerst, C., Boukherroub, R., Morkin, T.L., Jenkins, S.I., Sung, K., Tidwell, T.T.: Substituent effects on the reactivity of the silicon−carbon double bond. Substituted 1,1-dimethylsilenes from Far-UV laser flash photolysis of α-silylketenes and (Trimethylsilyl)diazomethane. J. Am. Chem. Soc. 121(20), 4744–4753 (1999)

    Article  Google Scholar 

  38. Matsuo, T., Hayakawa, N.: pi-Electron systems containing Si=Si double bonds. Sci. Technol. Adv. Mater. 19(1), 108–129 (2018)

    Article  Google Scholar 

  39. Shi, Z., Zhang, Z., Kutana, A., Yakobson, B.I.: Predicting two-dimensional silicon carbide monolayers. ACS Nano 9(10), 9802–9209 (2015)

    Article  Google Scholar 

  40. Wu, I.J., Guo, G.Y.: Optical properties of SiC nanotubes: Anab initiostudy. Phys. Rev. B 76(3), 035343 (2007)

    Article  Google Scholar 

  41. Zhou, L.J., Zhang, Y.F., Wu, L.M.: SiC2 siligraphene and nanotubes: novel donor materials in excitonic solar cells. Nano Lett. 13(11), 5431–5436 (2013)

    Article  Google Scholar 

  42. Patnaik, P., Mukhopadhyay, G., Singh, P.P., Garg, A.B., Mittal, R., Mukhopadhyay, R.: Magnetism in transition metal doped Cubic SiC, pp. 1087–1088 (2011)

  43. Majid, A., Rani, N., Malik, M.F., Ahmad, N., Najamal, H., Hussain, F., Shakoor, A.: A review on transition metal doped silicon carbide. Ceram. Int. 45(7), 8069–8080 (2019)

    Article  Google Scholar 

  44. Hebard, A.F., Rairigh, R.P., Kelly, J.G., Pearton, S.J., Abernathy, C.R., Chu, S.N.G., Wilson, R.G.: Mining for highTcferromagnetism in ion-implanted dilute magnetic semiconductors. J. Phys. D Appl. Phys. 37(4), 511 (2004)

    Article  Google Scholar 

  45. Medvedeva, N.I., Yur’eva, E.I., Ivanovskii, A.L.: Electronic structure of cubic silicon carbide with substitutional 3D impurities at Si and C sites. Semiconductors 37(11), 1243–1246 (2003)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal A. Talla.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talla, J.A., Salem, M.A. Combined effect of Stone–Wales defects and titanium doping on electronic properties of a silicon carbide monolayer: DFT. J Comput Electron 22, 68–79 (2023). https://doi.org/10.1007/s10825-022-01952-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01952-3

Keywords

Navigation