Skip to main content
Log in

Characterization of nanoporous β-SiC fiber complex prepared by electrospinning and carbothermal reduction

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The nanoporous β-silicon carbide (SiC) nano-sized fiber complex were made from precursors of various ratios with (SiO2) as silicon source and polyacrylonitrile as carbon source by simple electrospinning method and economical carbothermal reduction. The prepared samples were characterized by SEM for surface shape, XRD for crystalline properties, TGA in air for oxygen resistance, and BET for porosity according to the precursor components (C/Si mol ratio). The samples with carbon ratio to silicon (C/Si) of five or more in the precursor showed the long fiber shape. Increasing the C/Si in the precursor solution tended to lead higher β-SiC crystalline and smaller crystallite size than low C/Si in the precursor solution because excess carbon could act as a dispersant and barrier to prevent neck growth or adhesion of SiC. The prepared samples have superior oxidation resistance as a whole. The increment of the C/Si leads to the increment of porosity. Also, it seems that the gaseous pore development of carbon during carbothermal reduction leads to mainly small pores (micro- or mesopores).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Melchior, C. Perkins, P. Lichty, A.W. Weimer, A. Steinfeld, Chem. Eng. Process. 48, 1279 (2009)

    CAS  Google Scholar 

  2. B. Choi, B. Liu, J.W. Jeong, J. Ind. Eng. Chem. 15, 707 (2009)

    CAS  Google Scholar 

  3. E.H. Zhang, Z.B. Kim, H.J. Joo, J. Ind. Eng. Chem. 13, 227 (2007)

    CAS  Google Scholar 

  4. J. Chen, R. Wu, G. Yang, Y. Pan, J. Lin, L. Wu, R. Zhai, J. Alloy Compd. 456, 320 (2008)

    Article  CAS  Google Scholar 

  5. S.J. Kim, S.M. Yun, Y.S. Lee, J. Ind. Eng. Chem. 16, 273 (2010)

    CAS  Google Scholar 

  6. J.P. Jeun, Y.K. Jeon, Y.C. Nho, P.H. Kang, J. Ind. Eng. Chem. 15, 430 (2009)

    CAS  Google Scholar 

  7. J.S. Im, J.S. Jang, Y.S. Lee, J. Ind. Eng. Chem. 15, 914 (2009)

    CAS  Google Scholar 

  8. J.Y. Park, I.H. Lee, G.N. Bea, J. Ind. Eng. Chem. 14, 707 (2008)

    CAS  Google Scholar 

  9. M.N. Tan, Y.S. Park, J. Ind. Eng. Chem. 15, 365 (2009)

    CAS  Google Scholar 

  10. R.M. Mohamed, A.A. EL-Midany, I. Othman, Res. Chem. Intermed. 34, 629 (2008)

    Article  CAS  Google Scholar 

  11. M. Inada, N. Enomoto, J. Hojo, Res. Chem. Intermed. 36, 115 (2010)

    Article  CAS  Google Scholar 

  12. Y.J. Shin, D.H. Yang, M.H. Oh, Y.S. Yoon, J.S. Shin, J. Ind. Eng. Chem. 15, 238 (2009)

    CAS  Google Scholar 

  13. A. Hahnel, V. Ischenko, J. Woltersdorf, Mater. Chem. Phys. 110, 303 (2008)

    Article  Google Scholar 

  14. V. Raman, O.P. Bahl, V.K. Parashar, in Carbon and Carbonaceous Composite Materials, ed. by K.R. Palmer, D.T. Marx, M.A. Wright (World Scientific, Singapore, 1996), p. 198

  15. F.J. Clemens, V. Wallquist, W. Buchser, M. Wegmann, T. Graule, Ceram. Int. 33, 491 (2007)

    Article  CAS  Google Scholar 

  16. T. Jarusuwannapoom, W. Hongroiianawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, P. Supahol, Eur. Polym. J. 41, 409 (2005)

    Article  CAS  Google Scholar 

  17. J.P. Jeun, Y.M. Lim, Y.C. Nho, J. Ind. Eng. Chem. 11, 573 (2005)

    CAS  Google Scholar 

  18. K. Eiji, H. Takashi, H. Kaoru, K. Hiroyuki, JP 01-156513, 1989

  19. J.S. Im, S.J. Park, Y.S. Lee, J. Colloid Interface Sci. 314, 32 (2007)

    Article  CAS  Google Scholar 

  20. J.S. Im, S.J. Kim, P.H. Kang, Y.S. Lee, J. Ind. Eng. Chem. 15, 699 (2009)

    CAS  Google Scholar 

  21. M.C. McManus, E.D. Boland, H.P. Koo, C.P. Barnes, K.J. Pawlowski, G.E. Wnek, D.G. Simpson, G.L. Bowlin, Acta Biomater. 2, 19 (2006)

    Article  Google Scholar 

  22. O. Ayodeji, E. Graham, D. Kniss, J. Lannutti, D. Tomasko, J. Supercrit. Fluids 41, 173 (2007)

    Article  CAS  Google Scholar 

  23. J.S. Im, S.W. Woo, M.J. Jung, Y.S. Lee, J. Colloid Interface. Sci. 327, 115 (2008)

    Article  CAS  Google Scholar 

  24. C. Norfolk, A. Mukasyan, D. Hayes, P. McGinn, A. Varma, Carbon 44, 293 (2006)

    Article  CAS  Google Scholar 

  25. S. Yajima, K. Okamura, J. Hayashi, M. Omori, J. Am. Ceram. Soc. 59, 324 (1976)

    Article  CAS  Google Scholar 

  26. V. Raman, V.K. Parashar, S.R. Dhakata, M. Bhutani, O.P. Bahl, in 24th Biennial Conference on Carbon (American Carbon Society, Charleston, 1999), p. 504

  27. L.A. Harris, C.R. Kennedy, G.C.T. Wei, F.P. Jeffers, J. Am. Ceram. Soc. 67, C121 (1984)

    Article  CAS  Google Scholar 

  28. R.L. David, Handbook of Chemistry and Physics, 71st edn. (CRC Press, Boca Raton, 1990)

    Google Scholar 

  29. M.E. Ramos, P.R. Bonelli, A.L. Cukierman, M.M.L.R. Carrott, P.J.M. Carrott, Mater. Chem. Phys. 116, 310 (2009)

    Article  CAS  Google Scholar 

  30. V.V. Pujar, J.D. Cawley, J. Am. Ceram. Soc. 78, 774 (1995)

    Article  CAS  Google Scholar 

  31. G.C. Xi, Y.Y. Peng, S.M. Wang, T.W. Li, W.C. Yu, Y.T. Qian, J. Phys. Chem. B 108, 20102 (2004)

    Article  CAS  Google Scholar 

  32. G.W. Ho, A.S.W. Wong, D.J. Kang, M.E. Welland, Nanotechnology 15, 996 (2004)

    Article  CAS  Google Scholar 

  33. Q.Y. Lu, J.Q. Hu, K.B. Tang, Y.T. Qian, Appl. Phys. Lett. 75, 507 (1999)

    Article  CAS  Google Scholar 

  34. H.J. Kleebe, C. Turquat, J. Am. Ceram. Soc. 84, 1073 (2001)

    Article  CAS  Google Scholar 

  35. H. Wang, G.S. Fischman, J. Am. Ceram. Soc. 74, 1519 (1991)

    Article  CAS  Google Scholar 

  36. K. Koumoto, S. Takeda, C.H. Pai, T. Sato, H. Yanagida, J. Am. Ceram. Soc. 72, 1985 (1989)

    Article  CAS  Google Scholar 

  37. K. Chrissafis, K.M. Paraskevopoulos, S.Y. Stavrev, A. Docoslis, A. Vassiliou, D.N. Bikiaris, Thermochim. Acta 465, 6 (2007)

    Article  CAS  Google Scholar 

  38. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, Pure Appl. Chem. 57, 603 (1985)

    Article  CAS  Google Scholar 

  39. S.J. Gregg, K.S.W. Sing, in Adsorption, Surface Area and Porosity, 2nd edn., ed. by D.A. Cadenhead, J.F. Danielli (Academic Press, New York, 1982), p. 248

    Google Scholar 

  40. M.J. Halat, K. Kedzior, Carbon 43, 944 (2005)

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by NSL (National Space Lab) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2009-0091850).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Seak Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SH., Yun, SM., Kim, S.J. et al. Characterization of nanoporous β-SiC fiber complex prepared by electrospinning and carbothermal reduction. Res Chem Intermed 36, 731–742 (2010). https://doi.org/10.1007/s11164-010-0175-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-010-0175-9

Keywords

Navigation