Skip to main content

Silicon-Carbon Bond Formation on Porous Silicon

  • Reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

Porous silicon has enormous potential for a variety of applications as a high surface area variant of single crystalline silicon. Its high surface area is its defining feature, which can dominate the properties of the material. The native surface produced after an electrochemical etch is typically a hydride-terminated surface that is only metastable in ambient air; this surface will oxidize over time. Surface chemical functionalization can enable stabilization of the porous silicon with respect to demanding chemical and biologically relevant environments and can enable precise tailoring of properties to endow the material with particular characteristics on demand. This chapter examines the surface chemistry of porous silicon that produces direct silicon-carbon bonds, to enable the covalent binding of just about any organic molecule of interest to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • (2013) CRC handbook of chemistry and physics, internet version, 93rd edn. CRC Press/Taylor and Francis

    Google Scholar 

  • Allen MJ, Buriak JM (1999) Photoluminescence of porous silicon surfaces stabilized through Lewis acid mediated hydrosilylation. J Lumin 80:29–35

    Google Scholar 

  • Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 60:1266–1277

    Article  Google Scholar 

  • Bateman JE, Eagling RD, Worrall DR, Horrocks BR, Houlton A (1998) Alkylation of porous silicon by direction reaction with alkenes and alkynes. Angew Chem Int Ed 37:2683–2684

    Article  Google Scholar 

  • Bateman JE, Eagling RD, Horrocks BR, Houlton A (2000) A deuterium labeling, FTIR, and Ab initio investigation of the solution-phase thermal reactions of alcohols and alkenes with hydrogen-terminated silicon surfaces. J Phys Chem B 104:5557–5565

    Article  Google Scholar 

  • Bent SF (2002) Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects. Surf Sci 500:879–903

    Article  Google Scholar 

  • Boukherroub R, Morin S, Wayner DDM, Lockwood DJ (2000) Thermal route for chemical modification and photoluminescence stabilization of porous silicon. Phys Status Solidi A 182:117–121

    Article  Google Scholar 

  • Boukherroub R, Morin S, Wayner DDM, Bensebaa F, Sproule GI, Baribeau J-M, Lockwood DJ (2001) Ideal passivation of luminescent porous silicon by thermal, noncatalytic reaction with alkenes and aldehydes. Chem Mater 13:2002–2011

    Article  Google Scholar 

  • Boukherroub R, Wojtyk JTC, Wayner DDM, Lockwood DJ (2002) Thermal hydrosilylation of undecylenic acid with porous silicon. J Electrochem Soc 149(2):H59–H63

    Article  Google Scholar 

  • Boukherroub R, Petit A, Loupy A, Chazalviel J-N, Ozanam F (2003) Microwave-assisted chemical functionalization of hydrogen-terminated porous silicon surfaces. J Phys Chem B 107:13459–13462

    Article  Google Scholar 

  • Buriak JM (2002) Organometallic chemistry of silicon and germanium surfaces. Chem Rev 102:1271–1308

    Article  Google Scholar 

  • Buriak JM, Allen MJ (1998) Lewis acid mediated functionalization of porous silicon with substituted alkenes and alkynes. J Am Chem Soc 120:1339–1340

    Article  Google Scholar 

  • Buriak JM, Stewart MP, Geders TW, Allen MJ, Choi HC, Smith J, Raftery D, Canham LT (1999) Lewis acid mediated hydrosilylation on porous silicon surfaces. J Am Chem Soc 121:11491–11502

    Article  Google Scholar 

  • Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048

    Article  Google Scholar 

  • Canham LT, Reeves CL, Newey JP, Houlton MR, Cox TI, Buriak JM, Stewart MP (1999) Derivatized mesoporous silicon with dramatically improved stability in simulated human blood plasma. Adv Mater 11:1505–1507

    Article  Google Scholar 

  • Ciampi S, Harper JB, Gooding JJ (2010) Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si–C bonds: surface preparation, passivation and functionalization. Chem Soc Rev 39:2158–2183

    Article  Google Scholar 

  • Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York, p 259

    Google Scholar 

  • Dattilo D, Armelao L, Maggini M, Fois G, Mistura G (2006) Wetting behavior of porous silicon surfaces functionalized with a fulleropyrrolidine. Langmuir 22:8764–8769

    Article  Google Scholar 

  • de Smet LCPM, Zuilhof H, Sudhölter EJR, Lie LH, Houlton A, Horrocks BR (2005) Mechanism of the hydrosilylation reaction of alkenes at porous silicon: experimental and computational deuterium labeling studies. J Phys Chem B 109:12020–12031

    Article  Google Scholar 

  • Guan B, Ciampi S, Luais E, James M, Reece PJ, Gooding JJ (2012) Depth-resolved chemical modification of porous silicon by wavelength-tuned irradiation. Langmuir 28:15444–15449

    Article  Google Scholar 

  • Guo D-J, Xiao S-J, Xia B, Wei S, Pei J, Pan Y, You X-Z, Gu Z-Z, Lu Z (2005) Reaction of porous silicon with both end-functionalized organic compounds bearing α-bromo and ω-carboxy groups for immobilization of biomolecules. J Phys Chem B 109:20620–20628

    Article  Google Scholar 

  • Gurtner C, Wun AW, Sailor MJ (1999) Surface modification of porous silicon by electrochemical reduction of organo halides. Angew Chem Int Ed 38:1966–1968

    Article  Google Scholar 

  • Hamers RJ (2008) Formation and characterization of organic monolayers on semiconductor surfaces. Annu Rev Anal Chem 1:707–736

    Article  Google Scholar 

  • Hartmann KI, Nieto A, Wu EC, Freeman WR, Kim JS, Chhablani J, Sailor MJ, Cheng L (2013) Hydrosilylated porous silicon particles function as an intravitreal drug delivery system for daunorubicin. J Ocul Pharmacol Ther. doi:10.1089/jop.2012.0205

    Google Scholar 

  • Holland JM, Stewart MP, Allen MJ, Buriak JM (1999) Metal mediated reactions of porous silicon surfaces. J Solid State Chem 147:251–258

    Article  Google Scholar 

  • Huck LA, Buriak JM (2012) Toward a mechanistic understanding of exciton-mediated hydrosilylation on nanocrystalline silicon. J Am Chem Soc 134:489–497

    Article  Google Scholar 

  • Kilian KA, Böcking T, Gooding JJ (2009) The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. Chem Commun 6:630–640

    Article  Google Scholar 

  • Kim NY, Laibinis PE (1998) Derivatization of porous silicon by grignard reagents at room temperature. J Am Chem Soc 120:4516–4517

    Article  Google Scholar 

  • Knagge K, Smith JR, Smith LJ, Buriak J, Raftery D (2006) Analysis of porosity in porous silicon using hyperpolarized 129Xe two-dimensional exchange experiments. Solid State Nucl Magn Reson 29:85–89

    Article  Google Scholar 

  • Lees IN, Lin H, Canaria CA, Gurtner C, Sailor MJ, Miskelly GM (2003) Chemical stability of porous silicon surfaces electrochemically modified with functional alkyl species. Langmuir 19:9812–9817

    Article  Google Scholar 

  • Li Y-H, Buriak JM (2006) Dehydrogenative silane coupling on silicon surfaces via early transition metal catalysis. Inorg Chem 45:1096–1102

    Article  Google Scholar 

  • Li H-F, Han H-M, Wu Y-G, Xiao S-J (2010) Biological functionalization and patterning of porous silicon prepared by Pt-assisted chemical etching. Appl Surf Sci 256:4048–4051

    Article  Google Scholar 

  • Linford MR, Chidsey CED (1993) Alkyl monolayers covalently bonded to silicon surfaces. J Am Chem Soc 115:12631–12632

    Article  Google Scholar 

  • Ogata Y, Niki H, Sakka T, Iwasaki M (1995) Oxidation of porous silicon under water vapor environment. J Electrochem Soc 142:1595–1601

    Article  Google Scholar 

  • Petit A, Delmotte M, Loupy A, Chazalviel J-N, Ozanam F, Boukherroub R (2008) Microwave effects on chemical functionalization of hydrogen-terminated porous silicon nanostructures. J Phys Chem C 112:16622–16628

    Article  Google Scholar 

  • Pietrass T, Bifone A, Pines A (1995) Adsorption properties of porous silicon characterized by optically enhanced 129Xe NMR spectroscopy. Surf Sci 334:L730–L734

    Article  Google Scholar 

  • Pike AR, Lie LH, Eagling RD, Ryder LC, Patole SN, Connolly BA, Horrocks BR, Houlton A (2002) DNA on silicon devices: on-chip synthesis, hybridization, and charge transfer. Angew Chem Int Ed 41:615–617

    Article  Google Scholar 

  • Robins EG, Stewart MP, Buriak JM (1999) Anodic and cathodic electrografting of alkynes on porous silicon. Chem Commun 24:2479–2480

    Article  Google Scholar 

  • Saghatelian A, Buriak J, Lin VS-Y, Ghadiri MR (2001) Transition metal mediated surface modification of porous silicon. Tetrahedron 57:5131–5136

    Article  Google Scholar 

  • Sailor MJ (2012) Porous silicon in practice. Preparation, characterization and applications. Wiley, Weinheim

    Google Scholar 

  • Scheres L, Giesbers M, Zuilhof H (2010) Organic monolayers onto oxide-free silicon with improved surface coverage: alkynes versus alkenes. Langmuir 26:4790–4795

    Article  Google Scholar 

  • Scheres L, Rijksen B, Giesbers M, Zuilhof H (2011) Molecular modeling of alkyl and alkenyl monolayers on hydrogen-terminated Si(111). Langmuir 27:972–980

    Article  Google Scholar 

  • Schmeltzer JM, Porter LA Jr, Stewart MP, Buriak JM (2002) Hydride abstraction initiated hydrosilylation of terminal alkenes and alkynes on porous silicon. Langmuir 18:2971–2974

    Article  Google Scholar 

  • Schwartz MP, Cunin F, Cheung RW, Sailor MJ (2005) Chemical modification of silicon surfaces for biological applications. Phys Status Solidi A 202:1380–1384

    Article  Google Scholar 

  • Singh P, Sharma SN, Ravindra NM (2010) Applications of porous silicon thin films in solar cells and biosensors. JOM 62:15–24

    Article  Google Scholar 

  • Song JH, Sailor MJ (1998) Functionalization of nanocrystalline porous silicon surfaces with aryllithium reagents: formation of silicon-carbon bonds by cleavage of silicon-silicon bonds. J Am Chem Soc 120:2376–2381

    Article  Google Scholar 

  • Stewart MP, Buriak JM (2001) Exciton-mediated hydrosilylation on photoluminescent nanocrystalline silicon. J Am Chem Soc 123:7821–7830

    Article  Google Scholar 

  • Wang D, Buriak JM (2005) Electrochemically driven organic monolayer formation on silicon surfaces using alkylammonium and alkylphosphonium reagents. Surf Sci 590:154–161

    Article  Google Scholar 

  • Wang D, Buriak JM (2006) Trapping silicon surface-based radicals. Langmuir 22:6214–6221

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Huck, L.A., Buriak, J.M. (2014). Silicon-Carbon Bond Formation on Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-05744-6_70

Download citation

Publish with us

Policies and ethics