Skip to main content
Log in

Low-lying electronic excitations and optical absorption spectra of the black dye sensitizer: a first-principles study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We report on ab-initio calculations of the electronic structure and optical absorption response of the black dye sensitizer in gas phase. We show that, despite the large size of this molecule, the second-order multiconfiguration quasi-degenerate perturbation theory (MC-QDPT) can be used to calculate vertical excitation energies, oscillator strengths and optical absorption spectra. The zeroth-order reference states entering perturbation calculations are complete active space (CAS) configuration interaction (CI) wave functions computed for 12 active electrons distributed in 12 active orbitals. We found that the CI approach is not enough for taking into account the strong dynamical correlation effects in this system. In fact, the excitation energies of the CAS-CI target states are strongly renormalized by the MC-QDPT calculations. In the calculated absorption spectra, the analysis of the perturbed wavefunctions revealed that the stronger absorption bands correspond to metal-to-ligand and ligand-to-ligand charge transfer processes. Comparison with independent time-dependent extension (TDDFT) calculations performed with different functionals shows that corrections to the long-range behavior of the functional is pivotal to achieve agreement with the MC-QDPT results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. TDDFT calculations with the functional LB94 were performed with NWChem [30].

  2. TDDFT calculations with the functionals B3P86, wB97X, M06, M062X and M052X were performed with GAUSSIAN 03 [50].

References

  1. Grätzel M (2001) Nature 414:338–344

    Article  Google Scholar 

  2. McFarland EW, Tang J (2003) Nature 421:616–618

    Article  CAS  Google Scholar 

  3. Grätzel M (2005) Inorg Chem 44:6841–6851

    Article  Google Scholar 

  4. Snaith HJ, Schmidt-Mende L (2007) Adv Mater 19:3187–3200

    Article  CAS  Google Scholar 

  5. Ikeda M, Koide N, Han L, Sasahara A, Onishi H (2008) Langmuir 24:8056–8060

    Article  CAS  Google Scholar 

  6. Klein C, Nazeeruddin MdK, Di Censo D, Liska P, Grätzel M (2004) Inorg Chem 43:4216–4226

    Article  CAS  Google Scholar 

  7. Nazeeruddin MdK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Grätzel M (1993) J Am Chem Soc 115:6382–6390

    Article  CAS  Google Scholar 

  8. Nakade S, Kubo W, Saito Y, Kanzaki T, Kitamura T, Wada Y, Yanagida SJ (2003) Phys Chem B 107:14244–14248

    Article  CAS  Google Scholar 

  9. Nazeeruddin MdK et al (2001) J Am Chem Soc 123:1613–1624

    Article  CAS  Google Scholar 

  10. Burke A, Schmidt-Mende L, Ito S, Grätzel M (2007) Chem Commun 3:234–236

    Article  Google Scholar 

  11. Schmidt-Mende L, Campbell WM, Wang Q, Jolley KW, Officer DL, Nazeeruddin MdK, Grätzel M (2005) ChemPhysChem 6:1253–1258

    Article  Google Scholar 

  12. Horiuchi T, Miura H, Sumioka K, Uchida S (2004) J Am Chem Soc 126:12218–12219

    Article  CAS  Google Scholar 

  13. Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Grätzel M (2005) Adv Mater 17:813–815

    Article  CAS  Google Scholar 

  14. Hara K, Sayama K, Ohga Y, Shinpo A, Suga S, Arakawa H (2001) Chem Commun 6:569–570

    Article  Google Scholar 

  15. Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) J Phys Chem B 107:597–606

    Article  CAS  Google Scholar 

  16. Nazeeruddin MdK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) J Am Chem Soc 127:16835–16847

    Article  CAS  Google Scholar 

  17. De Angelis F, Fantacci S, Selloni A, Nazeeruddin MdK, Grätzel M (2007) J Am Chem Soc 129:14156–14157

    Article  CAS  Google Scholar 

  18. De Angelis F, Fantacci S, Selloni A, Nazeeruddin MdK, Grätzel M (2010) J Phys Chem C 114:6054–6061

    Article  CAS  Google Scholar 

  19. De Angelis F, Fantacci S, Sgamellotti A (2007) Theor Chem Acc 117:1093–1104

    Article  CAS  Google Scholar 

  20. Clifford JN, Palomares E, Nazeeruddin MdK, Grätzel M, Nelson J, Li X, Long NJ, Durrant JR (2004) J Am Chem Soc 126:5225–5233

    Article  CAS  Google Scholar 

  21. Bonhôte P, Moser JE, Humphry-Baker R, Vlachopoulos N, Zakeeruddin SM, Walder L, Grätzel M (1999) J Am Chem Soc 121:1324–1336

    Article  Google Scholar 

  22. Nazeeruddin Mdk, Pèchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) J Am Chem Soc 123:1613–1624

    Article  CAS  Google Scholar 

  23. Nazeeruddin MdK, Pèchy P, Grätzel M (1997) Chem Commun 18:1705–1706

    Article  Google Scholar 

  24. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  25. Aiga F, Tada T (2003) J Mol Struct 658:25–32

    Article  CAS  Google Scholar 

  26. Ghosh S, Chaitanya GK, Bhanuprakash K, Nazeeruddin MdK, Grätzel M, Reddy PY (2006) Inorg Chem 45:7600–7611

    Article  CAS  Google Scholar 

  27. Leeuwen RV, Baerends EJ (1994) Phys Rev A 49:2421–2431

    Article  Google Scholar 

  28. Nakano H, Uchiyama R, Hirao K (2002) J Comput Chem 23:1166–1175

    Article  CAS  Google Scholar 

  29. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363; A complete list of the authors that has contributed to GAMESS is found at the top of every log file from a GAMESS run. The program website is http://www.msg.ameslab.gov/gamess

    Google Scholar 

  30. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comput Phys Commun 181:1477–1489

    Article  CAS  Google Scholar 

  31. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  32. Perdew JP, Chevray JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  33. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  34. Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  35. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  36. Hay PJ, Wadt WR (1985) J Chem Phys 82:284–298

    Article  Google Scholar 

  37. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  38. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  39. Leininger T, Nicklass A, Kuechle W, Stoll H, Dolg M, Bergner A (1996) Chem Phys Lett 255:274–280

    Article  CAS  Google Scholar 

  40. Feller D (1996) J Comp Chem 17:1571–1586

    CAS  Google Scholar 

  41. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045–1052

    Article  CAS  Google Scholar 

  42. Miyajima M, Watanabe Y, Nakano H (2006). J Chem Phys 124:044101/1-9

    Google Scholar 

  43. Ebisuzaki R, Watanabe Y, Nakano H (2007) Chem Phys Lett 442:164–169

    Article  CAS  Google Scholar 

  44. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–41

    Article  CAS  Google Scholar 

  45. Becke AD (1993) J Chem Phys 98:5648–5642

    Article  CAS  Google Scholar 

  46. Stephens PJ, Devlin FJ, Chablowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  47. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  48. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  49. Chai J-D, Head-Gordon M (2008) J Chem Phys 128:084106–084121

    Article  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision 01; Gaussian, Inc., Wallingford

  51. Velde GT, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snidjers JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  Google Scholar 

  52. Shklover V, Nazeeruddin MdK, Grätzel M, Ovchinnikov YE (2003) Appl Organomet Chem 16:635–642

    Article  Google Scholar 

  53. Gordon MS, Schmidt MW, Chaban GM, Glaesemann KR, Stevens WJ, Gonzalez C (1999) J Chem Phys 110:4199–4207

    Article  CAS  Google Scholar 

  54. Helgaker T, Joergensen P, Olsen J (2000) Molecualr electronic-structure theory. Wiley, Chichester (UK)

    Google Scholar 

  55. Schucan TH, Weidenmüller H (1972) Ann Phys NY 73:108–35

    Article  CAS  Google Scholar 

  56. Schucan TH, Weidenmüller H (1973) Ann Phys NY 76:483–509

    Article  Google Scholar 

  57. Witek HA, Choe Y-K, Finley JP, Hirao K (2002) J Comput Chem 23:957–965

    Article  CAS  Google Scholar 

  58. Nakano H (1993) J Chem Phys 99:7983–7992

    Article  CAS  Google Scholar 

  59. Roos BO, Andersson K, Fiilscher MP, Serrano-Andrés L, Pierloot K, Merchán M, Molina V (1996) J Mol Struct (Theochem) 388:257–276

    CAS  Google Scholar 

  60. Nakano H, Nakayama K, Hirao K, Dupuis M (1997) J Chem Phys 106:4912–4917

    Article  CAS  Google Scholar 

  61. Govindasamy A, Chen Lv, Tsuboi H, Koyama M, Endou A, Takaba H, Kubo M, del Carpio CA, Miyamoto A (2007) Jpn J Appl Phys 46:2655–2660

    Article  CAS  Google Scholar 

  62. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–82

    Article  Google Scholar 

Download references

Acknowledgments

All the calculations were carried out at the IBM-SP6 machine at the HPC CINECA center in the framework of the ISCRA projects HY-OPT and DEMOOPT. The authors thank the scientific staff of CINECA for updating of the GAMESS code. We acknowledge the financial support from the FP7 Marie Curie IIF project HY-SUNLIGHT:252906.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Delgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado, A., Corni, S. & Goldoni, G. Low-lying electronic excitations and optical absorption spectra of the black dye sensitizer: a first-principles study. Theor Chem Acc 131, 1115 (2012). https://doi.org/10.1007/s00214-012-1115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1115-0

Keywords

Navigation