Advertisement

Theoretical Chemistry Accounts

, 131:1115 | Cite as

Low-lying electronic excitations and optical absorption spectra of the black dye sensitizer: a first-principles study

  • Alain DelgadoEmail author
  • Stefano Corni
  • Guido Goldoni
Regular Article

Abstract

We report on ab-initio calculations of the electronic structure and optical absorption response of the black dye sensitizer in gas phase. We show that, despite the large size of this molecule, the second-order multiconfiguration quasi-degenerate perturbation theory (MC-QDPT) can be used to calculate vertical excitation energies, oscillator strengths and optical absorption spectra. The zeroth-order reference states entering perturbation calculations are complete active space (CAS) configuration interaction (CI) wave functions computed for 12 active electrons distributed in 12 active orbitals. We found that the CI approach is not enough for taking into account the strong dynamical correlation effects in this system. In fact, the excitation energies of the CAS-CI target states are strongly renormalized by the MC-QDPT calculations. In the calculated absorption spectra, the analysis of the perturbed wavefunctions revealed that the stronger absorption bands correspond to metal-to-ligand and ligand-to-ligand charge transfer processes. Comparison with independent time-dependent extension (TDDFT) calculations performed with different functionals shows that corrections to the long-range behavior of the functional is pivotal to achieve agreement with the MC-QDPT results.

Keywords

Excited states Black dye Dye-sensitized solar cells Configuration interaction Multi-reference perturbation theory 

Notes

Acknowledgments

All the calculations were carried out at the IBM-SP6 machine at the HPC CINECA center in the framework of the ISCRA projects HY-OPT and DEMOOPT. The authors thank the scientific staff of CINECA for updating of the GAMESS code. We acknowledge the financial support from the FP7 Marie Curie IIF project HY-SUNLIGHT:252906.

References

  1. 1.
    Grätzel M (2001) Nature 414:338–344CrossRefGoogle Scholar
  2. 2.
    McFarland EW, Tang J (2003) Nature 421:616–618CrossRefGoogle Scholar
  3. 3.
    Grätzel M (2005) Inorg Chem 44:6841–6851CrossRefGoogle Scholar
  4. 4.
    Snaith HJ, Schmidt-Mende L (2007) Adv Mater 19:3187–3200CrossRefGoogle Scholar
  5. 5.
    Ikeda M, Koide N, Han L, Sasahara A, Onishi H (2008) Langmuir 24:8056–8060CrossRefGoogle Scholar
  6. 6.
    Klein C, Nazeeruddin MdK, Di Censo D, Liska P, Grätzel M (2004) Inorg Chem 43:4216–4226CrossRefGoogle Scholar
  7. 7.
    Nazeeruddin MdK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Grätzel M (1993) J Am Chem Soc 115:6382–6390CrossRefGoogle Scholar
  8. 8.
    Nakade S, Kubo W, Saito Y, Kanzaki T, Kitamura T, Wada Y, Yanagida SJ (2003) Phys Chem B 107:14244–14248CrossRefGoogle Scholar
  9. 9.
    Nazeeruddin MdK et al (2001) J Am Chem Soc 123:1613–1624CrossRefGoogle Scholar
  10. 10.
    Burke A, Schmidt-Mende L, Ito S, Grätzel M (2007) Chem Commun 3:234–236CrossRefGoogle Scholar
  11. 11.
    Schmidt-Mende L, Campbell WM, Wang Q, Jolley KW, Officer DL, Nazeeruddin MdK, Grätzel M (2005) ChemPhysChem 6:1253–1258CrossRefGoogle Scholar
  12. 12.
    Horiuchi T, Miura H, Sumioka K, Uchida S (2004) J Am Chem Soc 126:12218–12219CrossRefGoogle Scholar
  13. 13.
    Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Grätzel M (2005) Adv Mater 17:813–815CrossRefGoogle Scholar
  14. 14.
    Hara K, Sayama K, Ohga Y, Shinpo A, Suga S, Arakawa H (2001) Chem Commun 6:569–570CrossRefGoogle Scholar
  15. 15.
    Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) J Phys Chem B 107:597–606CrossRefGoogle Scholar
  16. 16.
    Nazeeruddin MdK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) J Am Chem Soc 127:16835–16847CrossRefGoogle Scholar
  17. 17.
    De Angelis F, Fantacci S, Selloni A, Nazeeruddin MdK, Grätzel M (2007) J Am Chem Soc 129:14156–14157CrossRefGoogle Scholar
  18. 18.
    De Angelis F, Fantacci S, Selloni A, Nazeeruddin MdK, Grätzel M (2010) J Phys Chem C 114:6054–6061CrossRefGoogle Scholar
  19. 19.
    De Angelis F, Fantacci S, Sgamellotti A (2007) Theor Chem Acc 117:1093–1104CrossRefGoogle Scholar
  20. 20.
    Clifford JN, Palomares E, Nazeeruddin MdK, Grätzel M, Nelson J, Li X, Long NJ, Durrant JR (2004) J Am Chem Soc 126:5225–5233CrossRefGoogle Scholar
  21. 21.
    Bonhôte P, Moser JE, Humphry-Baker R, Vlachopoulos N, Zakeeruddin SM, Walder L, Grätzel M (1999) J Am Chem Soc 121:1324–1336CrossRefGoogle Scholar
  22. 22.
    Nazeeruddin Mdk, Pèchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) J Am Chem Soc 123:1613–1624CrossRefGoogle Scholar
  23. 23.
    Nazeeruddin MdK, Pèchy P, Grätzel M (1997) Chem Commun 18:1705–1706CrossRefGoogle Scholar
  24. 24.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  25. 25.
    Aiga F, Tada T (2003) J Mol Struct 658:25–32CrossRefGoogle Scholar
  26. 26.
    Ghosh S, Chaitanya GK, Bhanuprakash K, Nazeeruddin MdK, Grätzel M, Reddy PY (2006) Inorg Chem 45:7600–7611CrossRefGoogle Scholar
  27. 27.
    Leeuwen RV, Baerends EJ (1994) Phys Rev A 49:2421–2431CrossRefGoogle Scholar
  28. 28.
    Nakano H, Uchiyama R, Hirao K (2002) J Comput Chem 23:1166–1175CrossRefGoogle Scholar
  29. 29.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363; A complete list of the authors that has contributed to GAMESS is found at the top of every log file from a GAMESS run. The program website is http://www.msg.ameslab.gov/gamess Google Scholar
  30. 30.
    Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comput Phys Commun 181:1477–1489CrossRefGoogle Scholar
  31. 31.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Chevray JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  33. 33.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222CrossRefGoogle Scholar
  34. 34.
    Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654–3665CrossRefGoogle Scholar
  35. 35.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
  36. 36.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:284–298CrossRefGoogle Scholar
  37. 37.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  38. 38.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305CrossRefGoogle Scholar
  39. 39.
    Leininger T, Nicklass A, Kuechle W, Stoll H, Dolg M, Bergner A (1996) Chem Phys Lett 255:274–280CrossRefGoogle Scholar
  40. 40.
    Feller D (1996) J Comp Chem 17:1571–1586Google Scholar
  41. 41.
    Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045–1052CrossRefGoogle Scholar
  42. 42.
    Miyajima M, Watanabe Y, Nakano H (2006). J Chem Phys 124:044101/1-9Google Scholar
  43. 43.
    Ebisuzaki R, Watanabe Y, Nakano H (2007) Chem Phys Lett 442:164–169CrossRefGoogle Scholar
  44. 44.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–41CrossRefGoogle Scholar
  45. 45.
    Becke AD (1993) J Chem Phys 98:5648–5642CrossRefGoogle Scholar
  46. 46.
    Stephens PJ, Devlin FJ, Chablowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  47. 47.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  48. 48.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  49. 49.
    Chai J-D, Head-Gordon M (2008) J Chem Phys 128:084106–084121CrossRefGoogle Scholar
  50. 50.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision 01; Gaussian, Inc., WallingfordGoogle Scholar
  51. 51.
    Velde GT, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snidjers JG, Ziegler T (2001) J Comput Chem 22:931–967CrossRefGoogle Scholar
  52. 52.
    Shklover V, Nazeeruddin MdK, Grätzel M, Ovchinnikov YE (2003) Appl Organomet Chem 16:635–642CrossRefGoogle Scholar
  53. 53.
    Gordon MS, Schmidt MW, Chaban GM, Glaesemann KR, Stevens WJ, Gonzalez C (1999) J Chem Phys 110:4199–4207CrossRefGoogle Scholar
  54. 54.
    Helgaker T, Joergensen P, Olsen J (2000) Molecualr electronic-structure theory. Wiley, Chichester (UK)Google Scholar
  55. 55.
    Schucan TH, Weidenmüller H (1972) Ann Phys NY 73:108–35CrossRefGoogle Scholar
  56. 56.
    Schucan TH, Weidenmüller H (1973) Ann Phys NY 76:483–509CrossRefGoogle Scholar
  57. 57.
    Witek HA, Choe Y-K, Finley JP, Hirao K (2002) J Comput Chem 23:957–965CrossRefGoogle Scholar
  58. 58.
    Nakano H (1993) J Chem Phys 99:7983–7992CrossRefGoogle Scholar
  59. 59.
    Roos BO, Andersson K, Fiilscher MP, Serrano-Andrés L, Pierloot K, Merchán M, Molina V (1996) J Mol Struct (Theochem) 388:257–276Google Scholar
  60. 60.
    Nakano H, Nakayama K, Hirao K, Dupuis M (1997) J Chem Phys 106:4912–4917CrossRefGoogle Scholar
  61. 61.
    Govindasamy A, Chen Lv, Tsuboi H, Koyama M, Endou A, Takaba H, Kubo M, del Carpio CA, Miyamoto A (2007) Jpn J Appl Phys 46:2655–2660CrossRefGoogle Scholar
  62. 62.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–82CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.CNR-NANO S3, Institute for NanoscienceModenaItaly
  2. 2.Centro de Aplicaciones Tecnológicas y Desarrollo NuclearLa HabanaCuba
  3. 3.CNR-NANO S3, Institute for Nanoscience and Physics DepartmentUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations