Skip to main content
Log in

An integrated computational tool for the study of the optical properties of nanoscale devices: application to solar cells and molecular wires

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present a combined computational strategy for the study of the optical properties of nanoscale systems, using a combination of codes and techniques based on Density Functional Theory (DFT) and its Time Dependent extension (TDDFT). In particular, we describe the use of Car–Parrinello molecular dynamics simulations for the study of nanoscale devices and show the integration of the obtained results with available quantum chemistry codes for the calculation of TDDFT excitation energies, including solvation effects by continuum solvation models. We review some prototypical applications of this integrated computational strategy, ranging from the interaction of dye sensitizers with TiO2 nanoparticles, of interest in the field of dye-sensitized solar cells, to transition metal molecular wires exceeding 3 nm length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Car R, Parrinello M (1985). Phys Rev Lett 55:2471

    Article  CAS  Google Scholar 

  2. De Angelis F, Fantacci S, Sgamellotti A (2006). Coord Chem Rev 250:1497

    Article  CAS  Google Scholar 

  3. De Angelis F, Tarantelli F, Alunni S (2006). J Phys Chem B 110:11014

    Article  CAS  Google Scholar 

  4. Andruniov T, Fantacci S, De Angelis F, Ferrè N, Olivucci M (2005). Angew Chem Int Ed 44:6077

    Article  Google Scholar 

  5. Giannozzi P, De Angelis F, Marzari N (2005) Car R First principle molecular dynamics. In: Yip S, (eds) Handbook of materials modeling. Springer, Berlin Heidelberg New York

    Google Scholar 

  6. Pavone M, Cimino P, De Angelis F, Barone V (2006). J Am Chem Soc 128:4338

    Article  CAS  Google Scholar 

  7. Crescenzi O, Pavone M, De Angelis F, Barone V (2005). J Phys Chem B 109:445

    Article  CAS  Google Scholar 

  8. Pavone M, Benzi C, De Angelis F, Barone V (2004). Chem Phys Lett 395:120

    Article  CAS  Google Scholar 

  9. Hetényi B, De Angelis F, Giannozzi P, Car R (2004). J Phys Chem 120:8632

    Article  Google Scholar 

  10. Fantacci S, De Angelis F, Sgamellotti A, Marrone A, Re N (2005). J Am Chem Soc 127:14144

    Article  CAS  Google Scholar 

  11. De Angelis F, Jarzecki A A, Car R, Spiro T G (2005). J Phys Chem B 109:3065

    Article  CAS  Google Scholar 

  12. Miertus S, Scrocco E, Tomasi J (1981). Chem Phys 55:117

    Article  CAS  Google Scholar 

  13. Barone V, Cossi M (1998). J Phys Chem A 102:1995

    Article  CAS  Google Scholar 

  14. Cossi M, Rega N, Scalmani G, Barone V (2003). J Comput Chem 24:669

    Article  CAS  Google Scholar 

  15. Klamt A, Schurmann G (1993) J Chem Soc Perkin 2 Trans 799

  16. Klamt A, Jonas V (1996). J Chem Phys 105:9972

    Article  CAS  Google Scholar 

  17. Pye C C, Ziegler T (1999). Theor Chem Acc101:396

    CAS  Google Scholar 

  18. Fantacci S, De Angelis F, Selloni A (2003). J Am Chem Soc 125:4381

    Article  CAS  Google Scholar 

  19. Alunni S, De Angelis F, Ottavi L, Papavasileiou M, Trantelli F (2005). J Am Chem Soc 127:15151

    Article  CAS  Google Scholar 

  20. Casida M (1995) Time dependent density functional response theory for molecules. In: Chong DP (eds) Recent advances in density functional methods vol 1. World Scientific, Singapore, pp. 155

    Google Scholar 

  21. Fantacci S, Migani A, Olivucci M (2004). J Phys Chem A 108:1208

    Article  CAS  Google Scholar 

  22. Dreuw A, Head-Gordon M (2004). J Am Chem Soc 126:4007

    Article  CAS  Google Scholar 

  23. Tozer DJ, Amos RD, Handy NC, Roos BO, Serrano-Andres L (1999). Mol Phys 97:859

    Article  CAS  Google Scholar 

  24. De Angelis F, Car R, Spiro TG (2003). J Am Chem Soc 125:15710

    Article  CAS  Google Scholar 

  25. De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK (2005). Chem Phys Lett 415:115

    Article  CAS  Google Scholar 

  26. Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005). J Am Chem Soc 127:16835

    Article  CAS  Google Scholar 

  27. Iyengar SS, Schegel HB, Millan JM, Voth GA, Scuseria GE, Frisch MJ (2001). J Chem Phys 114:9758

    Article  Google Scholar 

  28. Schegel HB, Millan JM, Iyengar SS, Daniels AD, Scuseria GE, Frisch MJ (2001). J Chem Phys 115:10291

    Article  Google Scholar 

  29. Vanderbilt D (1990). Phys Rev B 41:7892

    Article  Google Scholar 

  30. Pasquarello A, Laasonen K, Car R, Lee C, Vanderbilt D (1992). Phys Rev Lett 69:1982

    Article  CAS  Google Scholar 

  31. Giannozzi P, De Angelis F, Car R (2004). J Chem Phys 120:5903

    Article  CAS  Google Scholar 

  32. Fantacci S, De Angelis F, Sgamellotti A, Re N (2004). Chem Phys Lett 396:43

    Article  CAS  Google Scholar 

  33. De Angelis F, Sgamellotti A, Re N (2002). Organometallics 21:2715

    Article  CAS  Google Scholar 

  34. Fantacci S, De Angelis F, Sgamellotti A, Re N (2001). Organometallics 20:4031

    Article  CAS  Google Scholar 

  35. te Velde G, Bickelhaupt F M, Baerends EJ, van Gisbergen SJA, Fonseca-Guerra C, Snjders J G, Ziegler T (2001). J Comput Chem 22:931

    Article  CAS  Google Scholar 

  36. te Velde G, Baerends EJ (1992). J Comp Phys 99:84

    Article  CAS  Google Scholar 

  37. Baerends EJ, Ellis DE, Ros P (1973). Chem Phys 2:42

    Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.05. Gaussian, Inc., Pittsburgh PA

  39. Cossi M, Barone V (2001). J Chem Phys 115:4708

    Article  CAS  Google Scholar 

  40. De Angelis F, Fantacci S, Selloni A (2004). Chem Phys Lett 389:204

    Article  CAS  Google Scholar 

  41. Grätzel M (2001). Nature 414:338

    Article  Google Scholar 

  42. O’Regan B, Grätzel M (1991). Nature 53:737

    Article  Google Scholar 

  43. Nazeeruddin M K, Kay A, Rodicio I, Humphry-Baker R, Muller E, Liska P, Vlachopoulos N, Grätzel M (1993). J Am Chem Soc 115:6382

    Article  Google Scholar 

  44. Guillemoles J F, Barone, Joubert L, Adamo C (2002). J Phys Chem A 106:11354

    Article  CAS  Google Scholar 

  45. Monat J E, Rodriguez J H, McCusker J K (2002). J Phys Chem 106:7399

    CAS  Google Scholar 

  46. Cecchet F, Gioacchini A M, Marcaccio M, Paolucci F, Roffia S, Alebbi M, Bignozzi C A (2002). J Phys Chem B 106:3926

    Article  CAS  Google Scholar 

  47. Rensmo H, Södergren S, Patthey L, Westmark K, Vayssieres L, Khole O, Bru hwiler PA, Hagfeldt A, Siegbahn H (1997). Chem Phys Lett 274:51

    Article  CAS  Google Scholar 

  48. Barolo C, Nazeeruddin M K, Fantacci S, Di Censo D, Compte P, Liska P, Viscardi G, Quagliotto P, De Angelis F, Grätzel M (2006). Inorg Chem 45:4642

    Article  CAS  Google Scholar 

  49. Nazeeruddin M K, Bessho T, Ito S, Klein C, De Angelis F, Fantacci S, Comte P, Liska P, Imai H, Grätzel M (2006) J. Photochem Photobiol A (in press)

  50. De Angelis F, Tilocca A, Selloni A (2004). J Am Chem Soc 126:15024

    Article  CAS  Google Scholar 

  51. Becke A D (1993). Chem Phys 98:5648

    Article  Google Scholar 

  52. Godbout N, Salahub D R, Andzelm J, Wimmer E (1992). Can J Chem 70:560

    Article  CAS  Google Scholar 

  53. Binkley J S, Pople J A, Hehre W J (1980). J Am Chem Soc102:939

    Article  CAS  Google Scholar 

  54. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  55. Khoudiakov M, Parise AR, Brunschwig BS (2003). J Am Chem Soc 125:4637

    Article  CAS  Google Scholar 

  56. Weng YX, Wang YQ, Asbury JB, Ghosh HN, Lian T (2000). J Phys Chem B 104:93

    Article  CAS  Google Scholar 

  57. Williamson AJ, Grossman JC, Hood RQ, Puzder A, Galli G (2002). Phys Rev Lett 89:196803

    Article  Google Scholar 

  58. Matxain JM, Mercero JM, Fowler JE,Ugalde JM (2003). J Am Chem Soc 125:9494

    Article  CAS  Google Scholar 

  59. Persson P, Lundqvist M J (2005). J Phys Chem B 109:11918

    Article  CAS  Google Scholar 

  60. Tour JM (2000). Acc. Chem. Res. 33:791

    Article  CAS  Google Scholar 

  61. Balzani V, Juris A, Venturi M, Campagna S, Serroni S (1996). Chem Rev 96:759

    Article  CAS  Google Scholar 

  62. Swager T M (1998). Acc Chem Res 31:201

    Article  CAS  Google Scholar 

  63. Malliaras GG, Scott JC (2000) The chemistry, physics and engineering of organic light-emitting diodes. In: Hadziioannou G, van Hutten PF (eds) Semiconducting Polymers. Wiley–VCH, New York, Weinheim

    Google Scholar 

  64. Fantacci S, De Angelis F, Wang J, Bernhard S, Selloni A (2004). J Am Chem Soc 126:9715

    Article  CAS  Google Scholar 

  65. Dunning TH Jr., Hay PJ In: Modern theoretical chemistry, vol. 3. Schaefer HF III (ed) Plenum, New York, p 1–28

  66. Hay PJ, Wadt W R (1985). J Chem Phys 82:270

    Article  CAS  Google Scholar 

  67. Wadt WR, Hay PJ (1985). J Chem Phys 82:284

    Article  CAS  Google Scholar 

  68. Hay PJ, Wadt WR (1985). J Chem Phys 82:299

    Article  CAS  Google Scholar 

  69. Hehre WJ, Stewart RF, Pople JA (1969). J Chem Phys 51:2657

    Article  CAS  Google Scholar 

  70. Tsuda A, Osuka A (2001). Science 293:79

    Article  CAS  Google Scholar 

  71. De Angelis F, Fantacci S, Sgamellotti A, Cariati E, Ugo R, Ford P C (2006) Inorg Chem (in press)

  72. Locatelli D, Quici S, Roberto D, De Angelis F (2005) Chem Comm 5404:

  73. De Angelis F, Fantacci S, Sgamellotti A, Cariati F, Roberto D, Tessore F, Ugo R (2006) Dalton Trans 852

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo De Angelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Angelis, F., Fantacci, S. & Sgamellotti, A. An integrated computational tool for the study of the optical properties of nanoscale devices: application to solar cells and molecular wires. Theor Chem Account 117, 1093–1104 (2007). https://doi.org/10.1007/s00214-006-0224-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0224-z

Keywords

Navigation