Skip to main content
Log in

The VCI-P code: an iterative variation–perturbation scheme for efficient computations of anharmonic vibrational levels and IR intensities of polyatomic molecules

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A variation–perturbation scheme called VCI-P code is proposed. It is developed mainly for the efficient and accurate theoretical description of vibrational resonances in polyatomic molecules. This state-specific process consists of the iterative construction of small matrices for each vibrational state, using the most important configurations contributing to that state. The weak couplings are considered perturbationally. The keypoint of this paper is a recipe that allows the massive truncation of the vibrational configuration space with minimum error in the calculated energies. The anharmonic frequencies and IR/vibrational absorption (VA) intensities obtained using VCI-P for methane and formaldehyde are compared to their full VCI counterparts. The convergence of the VCI-P results with respect to configuration selection is also discussed from the examples of trans-difluoroethylene and ethylene oxide (also called oxirane). A parallelization scheme for the 3N − 5 calculations on distributed memory computers is proposed. Representative computational times are presented for molecules ranging in size from 4 to 15 atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Meier R (2005) Chem Soc Rev 34:743

    Article  CAS  Google Scholar 

  2. Sevegney M, Kannan R, Siedle A, Naik R, Naik V (2006) Vib Spectrosc 40:246

    Article  CAS  Google Scholar 

  3. Gagarinov A, Degtyareva O, Khodonov A, Terpugov E (2006) Vib Spectrosc 42:231

    Article  CAS  Google Scholar 

  4. Schweitzer-Stenner R (2006) Vib Spectrosc 42:98

    Article  CAS  Google Scholar 

  5. Xie W, Ye Y, Shen A, Zhou L, Lou Z, Wang X, Hu J (2008) Vib Spectrosc 47:119

    Article  CAS  Google Scholar 

  6. Aliaga A, Osorio-Roman I, Garrido C, Leyton P, Cárcamo J, Clavijo E, Gómez-Jeria J, G F, Campos-Vallette M (2008) Vib Spectrosc

  7. Zhao W, Gao X, Hao L, Huang M, Huang T, Wu T, Zhang W, Chen W (2007) Vib Spectrosc 44:388

    Article  CAS  Google Scholar 

  8. Portnov A, Ganot Y, Bespachiansky E, Rosenwaks S, Bar I (2006) Vib Spectrosc 42:147

    Article  CAS  Google Scholar 

  9. Crim F (1996) J Phys Chem 100:12725

    Article  CAS  Google Scholar 

  10. Åstrand P, Ruud K, Taylor P (2000) J Chem Phys 112:2655

    Article  Google Scholar 

  11. Kongsted J, Christiansen O (2006) J Chem Phys 125:124108

    Article  CAS  Google Scholar 

  12. Berens P, Wilson K (1981) J Chem Phys 74:4872

    Article  CAS  Google Scholar 

  13. Rega N (2006) Theor Chem Acc 116:347

    Article  CAS  Google Scholar 

  14. Carbonniere P, Dargelos A, Ciofini C, Adamo C, Pouchan C (2009) Phys Chem Chem Phys 21:4375

    Article  CAS  Google Scholar 

  15. Pouchan C, Carbonniere P (2009) Chin J Chem Phys 22:123

    Article  CAS  Google Scholar 

  16. Carter S, Bowman J, Handy N (1998) Theor Chem Acc 100:191

    CAS  Google Scholar 

  17. Burcl R, Handy N, Carter S (2003) Spectro Chem Acta Part A 59:1881

    Article  CAS  Google Scholar 

  18. Miani A, Cané E, Palmieri P, Trombetti A, Handy N (2000) J Chem Phys 112:248

    Article  CAS  Google Scholar 

  19. Boese A, Martin J (2004) J Phys Chem A 108:3085

    Article  CAS  Google Scholar 

  20. Barone V, Festa G, Grandi A, Rega N, Sanna N (2004) Chem Phys Lett 388:279

    Article  CAS  Google Scholar 

  21. Carbonniere P, Pouchan C (2008) Chem Phys Lett 462:169

    Article  CAS  Google Scholar 

  22. Carter S, Culik S, Bowman J (1997) J Chem Phys 107:10458

    Article  CAS  Google Scholar 

  23. Bowman J, Christoffel K, Tobin F (1979) J Phys Chem 83:905

    Article  CAS  Google Scholar 

  24. Jung J, Gerber R (1996) J Chem Phys 105:10332

    Article  CAS  Google Scholar 

  25. Clabo D, Allen W, Remington R, Yamaguchi Y, Schaefer III H (1988) Chem Phys 123:187

    Article  CAS  Google Scholar 

  26. Dressler S, Thiel W (1997) Chem Phys Lett 273:71

    Article  CAS  Google Scholar 

  27. Christiansen O (2003) J Chem Phys 119:5773

    Article  CAS  Google Scholar 

  28. Dunn K, Boggs J, Pulay P (1986) J Chem Phys 85:5838

    Article  CAS  Google Scholar 

  29. Cassam-Chenai P, Lievin J (2006) J Comput Chem 27

  30. Ribeiro F, Iung C, Leforestier C (2005) J Chem Phys 123:054106

    Article  CAS  Google Scholar 

  31. Christiansen O (2004) J Chem Phys 120:2149

    Article  CAS  Google Scholar 

  32. Martin J, Lee T, Francois J (1995) J Chem Phys 103:2589

    Article  CAS  Google Scholar 

  33. Barone V (2005) J Chem Phys 122:014108

    Article  CAS  Google Scholar 

  34. Danecek P, Bour P (2007) J Comput Chem 28:1617

    Article  CAS  Google Scholar 

  35. Møller C, Plessetv (1934) Phys Rev 46:618

    Article  Google Scholar 

  36. Nielsen H Rev Mod Phys 23

  37. Willets A, Handy N (1995) Chem Phys Lett 235:286

    Article  Google Scholar 

  38. Carbonniere P (2002) PhD Thesis, University of Pau

  39. Gohaud N, Begue D, Darrigan C, Pouchan C (2005) J Comput Chem 26:743

    Article  CAS  Google Scholar 

  40. Rauhut G (2007) J Chem Phys 127:184109

    Article  CAS  Google Scholar 

  41. Iung C, Leforestier C, Wyatt R (1993) J Chem Phys 98:6722

    Article  CAS  Google Scholar 

  42. Christiansen O, Luis J (2005) Int J Quantum Chem 104

  43. Buenker R, Peyerimhoff S, Buthsher W (1978) Mol Phys 35:771

    Article  CAS  Google Scholar 

  44. Stuchebrukhov A, Marcus R (1993) J Chem Phys 98:6044

    Article  CAS  Google Scholar 

  45. Gaw JF, Willets A, Green WH, Handy NC, Bowmann JM (1990) Advanced molecular vibrations and collision dynamics, vol IB. JAI, Greenwich, CT

    Google Scholar 

  46. Pouchan C, Zaki K (1997) J Chem Phys 107:342

    Article  CAS  Google Scholar 

  47. Scribano Y, Benoit D (2008) Chem Phys Lett 458:384

    Article  CAS  Google Scholar 

  48. Wyatt R (1985) Chem Phys Lett 121:301

    Article  CAS  Google Scholar 

  49. Chang J, Moiseyev N, Wyatt R (1986) J Chem Phys 84:4997

    Article  CAS  Google Scholar 

  50. Hirao K (1991) Chem Phys Lett 190:374

    Article  Google Scholar 

  51. Nakano H (1993) J Chem Phys 99:7983

    Article  CAS  Google Scholar 

  52. Yagi K, Hirata S, Hirao K (2008) Phys Chem Chem Phys 10:1781

    Article  CAS  Google Scholar 

  53. Watson J (1968) Mol Phys 15:479

    Article  CAS  Google Scholar 

  54. Carbonniere P, Barone V (2004) Chem Phys Lett 392:365

    Article  CAS  Google Scholar 

  55. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford, CT

  56. Raghavachari K, Trucks G, Pople J, Head-Gordon M (1989) Chem Phys Lett 157:479

    Article  CAS  Google Scholar 

  57. Kendall R, Dunning T Jr, Harrison R (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  58. Becke A (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  59. Lee C, Yang W, Parr R et al (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  60. Vosko S, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  61. Carbonniere P, Barone V (2004) Chem Phys Lett 399:226

    Article  CAS  Google Scholar 

  62. Carbonniere P, Lucca T, Pouchan C, Rega N, Barone V (2005) J Comput Chem 26:284

    Google Scholar 

  63. Carbonniere P, Dargelos A (2008) VCI-P, a time independant treatment of anharmonicity from a variation-perturbation approach, IPREM, UMR 5254, Pau, France

  64. Baraille I, Larrieu C, Dargelos A, Chaillet M (2001) Chem Phys 273:91

    Article  CAS  Google Scholar 

  65. Burcl R, Carter S, Handy NC (2003) Chem Phys Lett 380:237

    Article  CAS  Google Scholar 

  66. Davidson E (1975) J Comput Phys 17:87

    Article  Google Scholar 

  67. Seidler P, Kongsted J, Christiansen O (2007) J Phys Chem A 111:11205

    Article  CAS  Google Scholar 

  68. Bégué D, Gohaud N, Pouchan C, Cassam-Chenaï P, Liévin J (2007) J Chem Phys 127:164115

    Article  CAS  Google Scholar 

  69. Reisner D, Field R, Kinsey J, Dai H (1984) J Chem Phys 80:5968

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Prof. Max Chaillet for his invaluable contributions in this field in our laboratory. We also thank Dr. Rémi Marchal for his helpful support in the preparation of this manuscript in its Latex version and the ten reviewers for their fruitfull comments, suggestions and improvements of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Carbonnière.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbonnière, P., Dargelos, A. & Pouchan, C. The VCI-P code: an iterative variation–perturbation scheme for efficient computations of anharmonic vibrational levels and IR intensities of polyatomic molecules. Theor Chem Acc 125, 543–554 (2010). https://doi.org/10.1007/s00214-009-0689-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0689-7

Keywords

Navigation