Skip to main content
Log in

Effect of the Screening Parameter on Shannon Entropy and Thermal Properties for Exponential Kratzer–Feus Potential

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this study, we propose the exponential Kratzer–Feus potential and study the effect of the screening parameter on the diatomic molecules of CH, \(H_2\), NO, HCL, and LiH. We first solve the Schrödinger equation using the Nikiforov–Uvarov functional analysis method to obtain the energy eigenvalue. Interestingly, the proposed exponential Kratzer–Feus potential exhibits a repulsive interaction for diatomic molecules. We also compute the energy spectra for diatomic molecules for different values of the screening parameter \(\alpha = 0\), 0.2, 0.4, 0.8, and 1.0. For a more complete study, we analyse the thermodynamic properties of the model. Furthermore, the quantum information measurements are calculated and used to study particle locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data and software used in this article are available from our software.

References

  1. A. Kratzer, Z. für Phys. 3, 289 (1920)

    Article  ADS  Google Scholar 

  2. E. Fues, Ann. Phys. 80, 367 (1926)

    Article  Google Scholar 

  3. S.B. Doma, A.A. Gohar, M.S. Younes, J. Math. Chem. 61, 1301 (2023)

    Article  MathSciNet  Google Scholar 

  4. P.G. Hajigeorgiou, J. Mol. Spectrosc. 1, 235 (2006)

    Google Scholar 

  5. S. Runge, A. Valence, Chem. Phys. Lett. 95, 567 (1983)

    Article  ADS  Google Scholar 

  6. A. Maireche, Ukr. J. Phys. 67(6), 7 (2022)

    MathSciNet  Google Scholar 

  7. A. Ghanbari, R. Khordad, Chem. Phys. 534, 110732 (2020)

    Article  Google Scholar 

  8. A.N. Ikot, U. Okorie, A.T. Ngiangia, C.A. Onate, C.O. Edet, I.O. Akpan, P.O. Amadi, Eclética Química 45(1), 65 (2020)

    Google Scholar 

  9. E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, E.S. William, Can. J. Phys. 99, 982 (2021)

  10. C.P. Onyenegecha, U.M. Ukewuihe, A.I. Opara, C.B. Agbakwuru, C.J. Okereke, N.R. Ugochukwu, S.A. Okolie, I.J. Njoku, Eur. Phys. J. Plus 135, 1 (2020)

  11. C.P. Onyenegecha, C.J. Okereke, I.J. Njoku, C.A. Madu, R.U. Ndubuisi, U.K. Nwajeri, Eur. Phys. J. Plus 137(1), 147 (2022)

    Article  Google Scholar 

  12. I.J. Njoku, C.P. Onyenegecha, C.J. Okereke, A.I. Opara, U.M. Ukewuihe, F.U. Nwaneho, Results Phys. 24, 104208 (2021)

    Article  Google Scholar 

  13. E.B. Ettah, Eur. J. Appl. Phys. 3(5), 58 (2021)

    Article  Google Scholar 

  14. P.O. Amadi, A.N. Ikot, G.J. Rampho, U.S. Okorie, H.Y. Abdullah, B.C. Lütfüoğlu, Revista Mexicana de física 66(6), 742 (2020)

    Article  MathSciNet  Google Scholar 

  15. S.H. Dong, Factorization method in quantum mechanics (Spinger, Netherlands, 2007)

    Book  Google Scholar 

  16. B.J. Falaye, S.M. Ikhdair, M. Hamzavi, Few-Body Syst. 56, 63 (2015)

    Article  ADS  Google Scholar 

  17. A.I. Ahmadov, S.M. Aslanova, M. Sh Orujova, S.V. Badalov, Adv. High Energy Phys. 2021, 1 (2021)

    Google Scholar 

  18. K.J. Oyewumi, Int. J. Theor. Phys. 49(6), 1302 (2010)

    Article  MathSciNet  Google Scholar 

  19. K.J. Oyewumi, Found. Phys. Lett. 18(1), 75 (2005)

    Article  Google Scholar 

  20. S.M. Ikhdair, R. Sever, Cent. Eur. J. Phys. 6(3), 685 (2008)

  21. S.M. Ikhdair, R. Sever, J. Mol. Struct. 809(1), 103 (2007)

    Article  Google Scholar 

  22. Z. Yalcin, M. Aktas, M. Simsek, Int. J. Quant. Chem. 76(5), 618 (2000)

    Article  Google Scholar 

  23. E. Omugbe, Can. J. Phys. 98(12), 1125 (2020)

    Article  ADS  Google Scholar 

  24. R. Khordad, Indian J. Phys. 87, 623 (2013)

    Article  ADS  Google Scholar 

  25. R.L.L. Vitória, K.A.T. da Silva, Eur. Phys. J. Plus 138(2), 1 (2023)

    Article  Google Scholar 

  26. S.R. Ge, X.Y. Xu, W.H. Zhang, Z.Y. Song, Y.S. Shi, J.H. Yuan, Z.H. Zhang, Physica E: Low-dimens. Syst. Nanostruct. 143, 115369 (2022)

    Article  Google Scholar 

  27. I.B. Okon, C.N. Isonguyo, A.D. Antia, A.N. Ikot, O.O. Popoola, Commun. Theor. Phys. 72, 065104 (2020)

    Article  ADS  Google Scholar 

  28. N. Bezginov, T. Valdez, M. Horbatsch, A. Marsman, A.C. Vutha, E.A. Hessels, Science 365, 6457 (2019)

    Article  Google Scholar 

  29. A. Arda, R. Sever, J. Math. Chem. 50, 1484 (2012)

    Article  MathSciNet  Google Scholar 

  30. F. Ahmed, Proc. R. Soc. A 479, 2272 (2023)

    Google Scholar 

  31. R. Giri, A. Monika, P. Vinod, Revista Mexicana de Física 68(5) (2022)

  32. T. Das, U. Ghosh, S. Sarkar, S. Das, J. Math. Phys. 59(2), 022111 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. E.V. Kirichenko, V.A. Stephanovich, Sci. Rep. 11(1), 11956 (2021)

    Article  ADS  Google Scholar 

  34. H. Chen, Q. Cheng, H. Liu, S. Cheng, S. Wang, W. Chen, Y. Shen, X. Li, H. Yang, J. Wang, Sci Bull. 67(12), 1243 (2022)

    Article  Google Scholar 

  35. M. Cerbelaud, B. Yasmine, P. Claire, Colloids Surfaces Physicochem. Eng. Aspects 650, 129572 (2022)

  36. J. Sun, H. Choi, S. Cha, D. Ahn, M. Choi, S. Park, J.J. Park, Adv. Funct. Mater. 32(7), 2109139 (2022)

    Article  Google Scholar 

  37. C. Puzzarini, J.F. Stanton, Phys. Chem. Chem. Phys. 25, 1421 (2023)

    Article  Google Scholar 

  38. M.E. Udoh, P.O. Amadi, U.S. Okorie, A.D. Antia, L.F. Obagboye, R. Horchani, N. Sulaiman, A.N. Ikot, Pramana 96(4), 222 (2022)

    Article  ADS  Google Scholar 

  39. R.L. Greene, C. Aldrich, Phys. Rev. A 14(6), 2363 (1976)

  40. G.F. Wei, S.H. Dong, Physica Scripta 81(3), 035009 (2010)

    Article  ADS  Google Scholar 

  41. S.H. Dong, W.C. Qiang, J. Garcia-Ravelo, Int. J. Modern Phys. A 23(10), 1537 (2008)

    Article  ADS  Google Scholar 

  42. A.N. Ikot, U.S. Okorie, P.O. Amadi, C.O. Edet, G.J. Rampho, R. Sever, Few-Body Syst. 62, 1–16 (2021)

    Article  ADS  Google Scholar 

  43. C.O. Edet, P.O. Amadi, E.B. Ettah, N. Ali, M. Asjad, A.N. Ikot, Mol. Phys. 120, 10 (2022)

    Article  Google Scholar 

  44. J.H. Eland, R. Feifel, Double Photoionisation Spectra of Molecules (Oxford University Press, Oxford, 2018)

    Google Scholar 

  45. S.V. Polyakov, V.O. Podryga, Math. Models Comput. Simul. 13, 774 (2021)

    Article  MathSciNet  Google Scholar 

  46. E.S. Eyube, P.P. Notani, Y. Dlama, E. Omugbe, C.A. Onate, I.B. Okon, G.G. Nyam, Y.Y. Jabil, M.M. Izam, Int. J. Quant. Chem. 123(5), e27040 (2023)

    Article  Google Scholar 

  47. S.H. Dong, M. Cruz-Irisson, J. Math. Chem. 50(4) (2012)

  48. K. Krippendorff, Mathematical Theory of Communication. Departmental Pepers (ASC), 169 (2009)

  49. F. Grasselli, Elements of quantum information theory. In: Quantum Cryptography, Springer, Cham (2021)

  50. C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)

  51. J.M. Amigó, R. Dale, P. Tempesta, Chaos 31, 013115 (2021)

    Article  ADS  Google Scholar 

  52. P.O. Amadi, A.N. Ikot, A.T. Ngiangia, U.S. Okorie, G.J. Rampho, H.Y. Abdullah, Int. J. Quantum Chem. 120, e26246 (2020)

    Article  Google Scholar 

  53. J.G. Dehesa, E.D. Belega, I.V. Toranzo, A.I. Aptekarev, Int. J. Quantum Chem. 119, e25977 (2019)

    Article  Google Scholar 

  54. C. Martnez-Flores, Phys. Lett. A 386, 126988 (2021)

    Article  Google Scholar 

  55. X.H. Wang, C.Y. Chen, Y. You, D.S. Sun, F.L. Lu, S.H. Dong, Phys. Scripta 98(5), 055404 (2023)

    Article  ADS  Google Scholar 

  56. R. Santana-Carrillo, J.S. González-Flores, E. Magaña-Espinal, L.F. Quezada, G.H. Sun, S.H. Dong, Entropy 24(11), 1516 (2022)

    Article  ADS  Google Scholar 

  57. C.A. Gil-Barrera, R. Sanatana Carrillo, G.H. Sun, S.H. Dong, Entropy 24(5), 604 (2022)

    Article  ADS  Google Scholar 

  58. F.C.E. Lima, A.R.P. Moreira, C.A.S. Almeida, C.O. Edet, N. Ali, Phys. Scripta 98(6), 065111 (2023)

    Article  ADS  Google Scholar 

  59. A.R.P. Moreira, J. Comput. Electron. 21, 21–33 (2022)

    Article  Google Scholar 

  60. F.C.E. Lima, A.R.P. Moreira, C.A.S. Almeida, Int. J. Quantum Chem. 121, e26645 (2021)

  61. F.C.E. Lima, A.R.P. Moreira, C.A.S. Almeida, Int. J. Quantum Chem. 121, e26749 (2021)

    Article  Google Scholar 

  62. A.R.P. Moreira, Physica E: Low-dimens. Syst. Nanostruct. 152, 115747 (2023)

    Article  Google Scholar 

  63. G.H. Sun, S.H. Dong, N. Saad, Annalen der Physik 525(12), 934 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  64. G. Yañez-Navarro, G.H. Sun, T. Dytrych, K.D. Launey, S.H. Dong, J.P. Draaye, Ann. Phys. 348, 153 (2014)

    Article  ADS  Google Scholar 

  65. W. Beckner, Ann. Math. 102, 159 (1975)

    Article  MathSciNet  Google Scholar 

  66. I. Bialynicki-Birula, J. Mycielski, Commun. Math. Phys. 44, 129 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to P. O. Amadi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Ikot et al. [42] proposed a simple and elegant method for solving a second-order differential equation of the hypergeometric type called the Nikiforov–Uvarov functional analysis method (NUFA) method. This method is easy and simple, just like the parametric NU method. As well known, the NU is used to solve a second-order differential equation of the form

$$\begin{aligned} \psi ''_n(s) + \frac{\tilde{\tau }(s)}{\sigma (s)}\psi '_n(s)+\frac{\tilde{\sigma }(s)}{\sigma ^2(s)}\psi _n(s) = 0, \end{aligned}$$
(24)

where \(\sigma (s)\) and \(\tilde{\sigma }(s)\) are polynomial, at most of second degree, and \(\tilde{\tau }(s)\) is first-degree polynomial. The parametric form of the NU method is the form

$$\begin{aligned} \psi ''_n(s) + \frac{\alpha _1-\alpha _2s}{s(1-\alpha _3s)}\psi '+\frac{1}{s^2(1-\alpha _3s)^2} [-\xi _1s^2+\xi _2s-\xi _3] \psi _n(s) = 0, \end{aligned}$$
(25)

where \(\alpha _i\) and \(_i(i=1,2,3)\) are all parameters. It can be observed in equation (25) two singularities at \(s\rightarrow 0\) and \(s\rightarrow 1\), and the wave function takes the form,

$$\begin{aligned} \psi (s) = s^{\lambda }(1-s)^v f(s). \end{aligned}$$
(26)

Substituting equation (26) into (25), we have

$$\begin{aligned} s(1-\alpha _1 s)f''(s) +[\alpha _1 + 2\lambda (2\lambda \alpha _3+2v\alpha _3+\alpha _2)s]f'(s){} & {} \nonumber \\ - \alpha _3 \left( \lambda +v+\frac{\alpha _2}{\alpha _3}-1 + \sqrt{\left( \frac{\alpha _2}{\alpha _3}-1\right) ^2+\frac{\xi _1}{\alpha _3}}\right){} & {} \nonumber \\ \times \left( \lambda +v+\frac{\alpha _2}{\alpha _3^2}-1 + \sqrt{\left( \frac{\alpha _2}{\alpha _3}-1\right) ^2+\frac{\xi _1}{\alpha _3^2}}\right){} & {} \nonumber \\ +\Bigg [\frac{\alpha _2 v - \alpha _1\alpha _3v +v(v+1)\alpha _3 -\frac{\xi _1}{\alpha _3}+\xi _2-\xi _3\alpha _3}{1-\alpha _3s}{} & {} \nonumber \\ + \frac{\lambda (\lambda -1)+\alpha _1\lambda -\xi _3}{s}\Bigg ] f(s)= & {} 0. \end{aligned}$$
(27)

Equation (27) can be reduced to a Gauss hypergeometric equation with the following condition,

$$\begin{aligned} \lambda (\lambda -1)+\alpha _1\lambda -\xi _3 = 0 \end{aligned}$$
(28)
$$\begin{aligned} \alpha _2v - \alpha _1\alpha _2v + v(v-1)\alpha - \frac{\xi _1}{\alpha _3} + \xi _2 - \xi _3\alpha = 0. \end{aligned}$$
(29)

Equation (27) becomes

$$\begin{aligned} s(1-\alpha _1 s)f''(s) +[\alpha _1 + 2\lambda (2\lambda \alpha _3+2v\alpha _3+\alpha _2)s]f'(s){} & {} \nonumber \\ - \alpha _3 \left( \lambda +v+\frac{\alpha _2}{\alpha _3}-1 + \sqrt{\left( \frac{\alpha _2}{\alpha _3}-1\right) ^2+\frac{\xi _1}{\alpha _3}}\right){} & {} \nonumber \\ \quad \times ~ \left( \lambda +v+\frac{\alpha _2}{\alpha _3^2}-1 + \sqrt{\left( \frac{\alpha _2}{\alpha _3}-1\right) ^2+\frac{\xi _1}{\alpha _3^2}}\right) f(s)= & {} 0. \end{aligned}$$
(30)

Solving equations (28) and (29) completely gives

$$\begin{aligned} \lambda= & {} \frac{(1-\alpha _1)\pm \sqrt{(1-\alpha _1)^2+4\xi }}{2} \nonumber \\ v= & {} \frac{\alpha _3(1+\alpha _1)-\alpha _2 \pm \sqrt{(\alpha _3(1+\alpha _1)\alpha _2)^2 +4\left( \frac{\xi _1}{\alpha _3}+\alpha _3\xi _3-\xi _2\right) }}{2}. \end{aligned}$$
(31)

The hypergeometric equation type takes the form,

$$\begin{aligned} x(1-x)f''(x)+[c+(a+b+1)x]f'(x)-abf(x) = 0. \end{aligned}$$
(32)

The energy equation and its wave equation are obtained as follows:

$$\begin{aligned} \lambda ^2 + 2\lambda \left[ v+\frac{\alpha _2}{\alpha _3} -1+\frac{n}{\sqrt{\alpha _3}}\right] + \left[ v+\frac{\alpha _2}{\alpha _3} -1+\frac{n}{\sqrt{\alpha _3}}\right] ^2 - \left[ \frac{\alpha _2}{\alpha _3} -1\right] - \frac{\xi ^3}{\alpha _3^2} = 0, \end{aligned}$$
(33)

and

$$\begin{aligned} \psi (s) = Ns^{\lambda }(1-\alpha _3s)^{v} {}_2F_1(a,b,c;s), \end{aligned}$$
(34)

where abc are given by

$$\begin{aligned} a= & {} \sqrt{\alpha _3} \left[ \lambda +v+\frac{\alpha _2}{\alpha _3}-1+\sqrt{\left( \frac{\alpha _2}{\alpha _3}-1\right) ^2 +\frac{\xi _1}{\alpha _3}}\right] , \end{aligned}$$
(35)
$$\begin{aligned} b= & {} \sqrt{\alpha _3}\left[ \lambda +v+\frac{\alpha _2}{\alpha _3}-1-\sqrt{\left( \frac{\alpha _2}{\alpha _3}-1\right) ^2 +\frac{\xi _1}{\alpha _3}}\right] , \end{aligned}$$
(36)
$$\begin{aligned} c= & {} \alpha _1 + 2\lambda . \end{aligned}$$
(37)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amadi, P.O., Moreira, A.R.P., Ikot, A.N. et al. Effect of the Screening Parameter on Shannon Entropy and Thermal Properties for Exponential Kratzer–Feus Potential. J Low Temp Phys (2024). https://doi.org/10.1007/s10909-024-03098-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10909-024-03098-x

Keywords

Navigation