Skip to main content
Log in

Vibrational Analysis Beyond the Harmonic Regime From Ab-initio Molecular Dynamics

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The characterization of fundamental vibrational levels from the analysis of ab-initio dynamics is discussed. Results from test calculations are compared with those obtained by a second-order perturbative procedure to include anharmonicity exploiting the same ab-initio potential. The influence of the single molecular modes on vibrationally averaged properties calculated on the fly during the dynamics is also analyzed. Formaldehyde, both in the gas phase and in acetonitrile solution, and the vinyl radical in the gas phase have been chosen as test molecules, while the hyperfine coupling constants of the open shell system is computed as an example of molecular properties. Results allow for a quantitative comparison with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carter S, Culik SJ, Bowman JM (1997). J Chem Phys 107:10458

    Article  CAS  Google Scholar 

  2. Koput J, Carter S, Handy NC (2001). J Chem Phys 115:8345

    Article  CAS  Google Scholar 

  3. Cassam-Chenai P, Lievin J (2003). J Quantum Chem 93:245

    Article  CAS  Google Scholar 

  4. Bowman JM (1986). Acc Chem Res 19:202

    Article  CAS  Google Scholar 

  5. Chaban GM, Jung JO, Gerber RB (1999). J Chem Phys 111:1823

    Article  CAS  Google Scholar 

  6. Wright NJ, Gerber RB, Tozer DJ (2000). Chem Phys Lett 324:206

    Article  CAS  Google Scholar 

  7. Wright NJ, Gerber RB (2000). J Chem Phys 112:2598

    Article  CAS  Google Scholar 

  8. Gregurick SK, Chaban GM, Gerber RB (2002). J Phys Chem A 106:8696

    Article  CAS  Google Scholar 

  9. Clabo DA, Allen WD, Remington RB, Yamaguchi Y III HFS (1988). Chem Phys 123:187

    Article  CAS  Google Scholar 

  10. Schneider W, Thiel W (1989). Chem Phys Lett 157:367

    Article  CAS  Google Scholar 

  11. Willets A, Handy NC, Green WH, Jayatilaka D (1990). J Phys Chem 94:5608

    Article  Google Scholar 

  12. Dressler S, Thiel W (1997). Chem Phys Lett 273:71

    Article  CAS  Google Scholar 

  13. Neugebauer J, Hess BA (2003). J Chem Phys 118:7215

    Article  CAS  Google Scholar 

  14. Christiansen O (2003). J Chem Phys 119:5773

    Article  CAS  Google Scholar 

  15. Ruden TA, Taylor PR, Helgaker T (2003). J Chem Phys 119:1951

    Article  CAS  Google Scholar 

  16. Yagi K, Tatetsugu T, Hirao K, Gordon MS (2000). J Chem Phys 113:1005

    Article  CAS  Google Scholar 

  17. Barone V (2005). J Chem Phys 122:14108

    Article  PubMed  CAS  Google Scholar 

  18. Ramirez R, Lopez-Ciudad T, Kumar P, Marx D (2004). J Chem Phys 121:3973

    Article  PubMed  CAS  Google Scholar 

  19. Schmitz M, Tavan P (2004). J Chem Phys 121:12247

    Article  PubMed  CAS  Google Scholar 

  20. Kaledin AL, Huang X, Bowman JM (2004). Chem Phys Lett 384:80

    Article  CAS  Google Scholar 

  21. Schmitz M, Tavan P (2004). J Chem Phys 121:12233

    Article  PubMed  CAS  Google Scholar 

  22. Amadei A, Linssen AB, Berendsen HJ (1993). Proteins 15:412

    Article  Google Scholar 

  23. Strachan A (2004). J Chem Phys 120:1

    Article  PubMed  CAS  Google Scholar 

  24. Schlegel HB, Millam JM, Iyengar SS, Voth GA, Daniels AD, Scuseria GE, Frisch MJ (2001). J Chem Phys 114:9758

    Article  CAS  Google Scholar 

  25. Iyengar SS, Schlegel HB, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2001). J Chem Phys 115:10291

    Article  CAS  Google Scholar 

  26. Schlegel HB, Iyengar SS, Li X, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2002). J Chem Phys 117:8694

    Article  CAS  Google Scholar 

  27. Barone V (2004). J Chem Phys 120:3059

    Article  PubMed  CAS  Google Scholar 

  28. Barone V (2004). Chem Phys Lett 383:528

    Article  CAS  Google Scholar 

  29. Barone V, Festa G, Grandi A, Rega N, Sanna N (2004). Chem Phys Lett 388:279

    Article  CAS  Google Scholar 

  30. Carbonniere P, Barone V (2004). Chem Phys Lett 399:226

    Article  CAS  Google Scholar 

  31. Carbonniere P, Barone V (2004). Chem Phys Lett 392:365

    Article  CAS  Google Scholar 

  32. Persico M, Tomasi J (1994). Chem Rev 24:1

    Google Scholar 

  33. Rega N, Iyengar SS, Voth GA, Schlegel HB, Frisch MJ (2004). J Phys Chem B 108:4210

    Article  CAS  Google Scholar 

  34. Karplus M, Kushick JN (1981). Macromolecules 14:325

    CAS  Google Scholar 

  35. Brooks BR, Janezic D, Karplus M (1995). J Comput Chem 16:1522

    Article  CAS  Google Scholar 

  36. Wheeler RA, Dong H, Boesch SE (2003). Chem Phys Chem 4:382

    PubMed  CAS  Google Scholar 

  37. Iyengar SS, Schlegel HB, Voth GA, Millam JM, Scuseria GE, Frisch MJ (2002). Isr J Chem 42:191

    Article  CAS  Google Scholar 

  38. Adamo C, Cossi M, Rega N, Barone V (2001). New computational strategies for the quantum mechanical study of biological systems in condensed phases. In Eriksson L (eds). Theoretical biochemistry. Processes and properties of biological systems. Elsevier, Amsterdam, pp 467–538

    Google Scholar 

  39. Weltner W Jr (1983). Magnetic atoms and molecules. van Nostrand, New York

    Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB et al (2003). Gaussian 03, revision b.05. Gaussian, Inc., Pittsburgh, PA

  41. Cossi M, Scalmani G, Rega N, Barone V (2003). J Comput Chem 24:669

    Article  PubMed  CAS  Google Scholar 

  42. Cossi M, Rega N, Scalmani G, Barone V (2002). J Chem Phys 117:43

    Article  CAS  Google Scholar 

  43. Barone V, Cossi M, Tomasi J (1997). J Chem Phys 107:3210

    Article  CAS  Google Scholar 

  44. Foresman JB, Frisch AE (1993). Exploring chemistry with electronic structure methods: a guide to using Gaussian. Gaussian, Inc.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Rega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rega, N. Vibrational Analysis Beyond the Harmonic Regime From Ab-initio Molecular Dynamics. Theor Chem Acc 116, 347–354 (2006). https://doi.org/10.1007/s00214-006-0076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0076-6

Keywords

Navigation