Skip to main content
Log in

Agomelatine (S20098) modulates the expression of cytoskeletal microtubular proteins, synaptic markers and BDNF in the rat hippocampus, amygdala and PFC

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Agomelatine is described as a novel and clinical effective antidepressant drug with melatonergic (MT1/MT2) agonist and 5-HT2C receptor antagonist properties. Previous studies suggest that modulation of neuronal plasticity and microtubule dynamics may be involved in the treatment of depression.

Objective

The present study investigated the effects of agomelatine on microtubular, synaptic and brain-derived neurotrophic factor (BDNF) proteins in selected rat brain regions.

Methods

Adult male rats received agomelatine (40 mg/kg i.p.) once a day for 22 days. The pro-cognitive effect of agomelatine was tested in the novel object recognition task and antidepressant activity in the forced swimming test. Microtubule dynamics markers, microtubule-associated protein type 2 (MAP-2), phosphorylated MAP-2, synaptic markers [synaptophysin, postsynaptic density-95 (PSD-95) and spinophilin] and BDNF were measured by Western blot in the hippocampus, amygdala and prefrontal cortex (PFC).

Results

Agomelatine exerted pro-cognitive and antidepressant activity and induced molecular changes in the brain areas examined. Agomelatine enhanced microtubule dynamics in the hippocampus and to a higher magnitude in the amygdala. By contrast, in the PFC, a decrease in microtubule dynamics was observed. Spinophilin (dendritic spines marker) was decreased, and BDNF increased in the hippocampus. Synaptophysin (presynaptic) and spinophilin were increased in the PFC and amygdala, while PSD-95 (postsynaptic marker) was increased in the amygdala, consistent with the phenomena of synaptic remodelling.

Conclusions

Agomelatine modulates cytoskeletal microtubule dynamics and synaptic markers. This may play a role in its pharmacological behavioural effects and may result from the melatonergic agonist and 5-HT2C antagonist properties of the compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen PB, Ouimet CC, Greengard P (1997) Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. PNAS 94:9956–9961

    Article  PubMed  CAS  Google Scholar 

  • Alves SE, Hoskin E, Lee SJ, Brake WG, Ferguson D, Luine V, Allen PB, Greengard P, McEwen BS (2002) Serotonin mediates CA1 spine density but is not crucial for ovarian steroid regulation of synaptic plasticity in the adult rat dorsal hippocampus. Synapse 45:143–151

    Article  PubMed  CAS  Google Scholar 

  • Ampuero E, Rubio FJ, Falcon R, Sandoval M, Diaz-Veliz G, Gonzalez RE, Earle N, Dagnino-Subiabre A, Aboitiz F, Orrego F, Wyneken U (2010) Chronic fluoxetine treatment induces structural plasticity and selective changes in glutamate receptor subunits in the rat cerebral cortex. Neuroscience 169:98–108

    Article  PubMed  CAS  Google Scholar 

  • Audinot V, Mailliet F, Lahaye-Brasseur C, Bonnaud A, Le Gall A, Amossé C, Dromaint S, Rodriguez M, Nagel N, Galizzi JP, Malpaux B, Guillaumet G, Lesieur D, Lefoulon F, Renard P, Delagrange P, Boutin JA (2003) New selective ligands of human cloned melatonin MT1 and MT2 receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 367:553–561

    Article  CAS  Google Scholar 

  • Banasr M, Soumier A, Hery M, Mocaër E, Daszuta A (2006) Agomelatine, a new antidepressant, induces regional changes in hippocampal neurogenesis. Biol Psychiatry 59:1087–1096

    Article  PubMed  CAS  Google Scholar 

  • Barden N, Shink E, Labbé M, Vacher R, Rochford J, Mocaër E (2005) Antidepressant action of agomelatine (S 20098) in a transgenic mouse model. Prog Neuropsychopharmacol 29:908–916

    Article  CAS  Google Scholar 

  • Bensimon G, Chermat R (1991) Microtubule disruption and cognitive defects: effect of colchicine on learning behavior in rats. Pharmacol Biochem Behav 38:141–145

    Article  PubMed  CAS  Google Scholar 

  • Bertaina-Anglade V, Drieu lR, Boyer PA, Mocaër E (2006) Antidepressant-like effects of agomelatine (S 20098) in the learned helplessness model. Behav Pharmacol 17:703–713

    Article  PubMed  CAS  Google Scholar 

  • Bertaina-Anglade V, Drieu-La-Rochelle C, Mocaër E, Seguin L (2011) Memory facilitating effects of agomelatine in the novel object recognition memory paradigm in the rat. Pharmacol Biochem Behav 98:511–517

    Article  PubMed  CAS  Google Scholar 

  • Bessa JM, Ferreira D, Melo I, Marques F, Cerqueira JJ, Palha JA, Almeida OF, Sousa N (2009) The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry 14:764–773

    Article  PubMed  CAS  Google Scholar 

  • Bianchi M, Moser C, Lazzarini C, Vecchiato E, Crespi F (2002) Forced swimming test and fluoxetine treatment: in vivo evidence that peripheral 5-HT in rat platelet-rich plasma mirrors cerebral extracellular 5-HT levels, whilst 5-HT in isolated platelets mirrors neuronal 5-HT changes. Exp Brain Res 143:191–197

    Article  PubMed  CAS  Google Scholar 

  • Bianchi M, Heidbreder C, Crespi F (2003) Cytoskeletal changes in the hippocampus following restraint stress: role of serotonin and microtubules. Synapse 49:188–194

    Article  PubMed  CAS  Google Scholar 

  • Bianchi M, Hagan JJ, Heidbreder CA (2005) Neuronal plasticity, stress and depression: involvement of the cytoskeletal microtubular system? Curr Drug Targets CNS Neurol Disord 4:597–611

    Article  PubMed  CAS  Google Scholar 

  • Bianchi M, Fone KCF, Azmi N, Heidbreder CA, Hagan JJ, Marsden CA (2006) Isolation rearing induces recognition memory deficits accompanied by cytoskeletal alterations in rat hippocampus. Eur J Neurosci 24:2894–2902

    Article  PubMed  CAS  Google Scholar 

  • Bianchi M, Shah AJ, Fone KC, Atkins AR, Dawson LA, Heidbreder CA, Hows ME, Hagan JJ, Marsden CA (2009a) Fluoxetine administration modulates the cytoskeletal microtubular system in the rat hippocampus. Synapse 63:359–364

    Article  PubMed  CAS  Google Scholar 

  • Bianchi M, Fone KC, Shah AJ, Atkins AR, Dawson LA, Heidbreder CA, Hagan JJ, Marsden CA (2009b) Chronic fluoxetine differentialy modulates the hippocampal microtubular and serotonergic system in grouped and isolation reared rats. Eur Neuropsychopharmacol 19:778–790

    Article  PubMed  CAS  Google Scholar 

  • Bourin M, Mocaër E, Porsolt R (2004) Antidepressant-like activity of S 20098 in the forced swimming test in rodents. Involvement of melatonin and 5-HT receptors. J Psy Neurosci 29:126–133

    Google Scholar 

  • Brotto LA, Barr AM, Gorzalka BB (2000) Sex differences in forced-swim and open-field test behaviours after chronic administration of melatonin. Eur J Pharmacol 402:87–93

    Article  PubMed  CAS  Google Scholar 

  • Calabrese F, Molteni R, Gabriel C, Mocaër E, Racagni G, Riva MA (2011) Modulation of neuroplastic molecules in selected brain regions after chronic administration of the novel antidepressant agomelatine. Psychopharmacol Berl 215:267–275

    Article  CAS  Google Scholar 

  • Calcagno E, Carli M, Baviera M, Invernizzi RW (2009) Endogenous serotonin and serotonin 2C receptors are involved in the ability of M100907 to suppress cortical glutamate release induced by NMDA receptor blockade. J Neurochem 108:521–532

    Article  PubMed  CAS  Google Scholar 

  • Castrén E, Rantamäki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity (Review). Dev Neurobiol 70:289–297

    Article  PubMed  Google Scholar 

  • Castrén E, Võikar V, Rantamäki T (2007) Role of neurotrophic factors in depression (Review). Curr Opin Pharmacol 7:18–21

    Article  PubMed  Google Scholar 

  • Chen S, Owens GC, Makarenkova H, Edelman DB (2010) HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One 5:e10848

    Article  PubMed  Google Scholar 

  • Clark RA, Shoaib M, Hewitt KN, Stanford SC, Bate ST (2011) A comparison of InVivoStat with other statistical software packages for analysis of data generated from animal experiments. J Psychopharmacol. doi:10.1177/0269881111420313

  • Conboy L, Tanrikut C, Zoladz PR, Campbell AM, Park CR, Gabriel C, Mocaër E, Sandi C, Diamond DM (2009) The antidepressant agomelatine blocks the adverse effects of stress on memory and enables spatial learning to rapidly increase neural cell adhesion molecule (NCAM) expression in the hippocampus of rats. Int J Neuropsychopharmacol 12:329–341

    Article  PubMed  CAS  Google Scholar 

  • Conde C, Cáceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites (Review). Nat Rev Neurosci 10:319–332

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Lucki I (2000) Antidepressant-like behavioral effects mediated by 5-hydroxytryptamine (2C) receptors. J Pharmacol Exp Ther 295:1120–1126

    PubMed  CAS  Google Scholar 

  • Cryan JF, Valentino RJ, Lucki I (2005) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test (Review). Neurosci Biobehav Rev 29:547–569

    Article  PubMed  CAS  Google Scholar 

  • De Bodinat C, Guardiola-Lemaitre B, Mocaër E, Renard P, Muñoz C, Millan MJ (2010) Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov 9:628–642

    PubMed  Google Scholar 

  • Dekeyne A, Mannoury la Cour C, Gobert A, Brocco M, Lejeune F, Serres F, Sharp T, Daszuta A, Soumier A, Papp M, Rivet JM, Flik G, Cremers TI, Muller O, Lavielle G, Millan MJ (2008) S32006, a novel 5-HT2C receptor antagonist displaying broad-based antidepressant and anxiolytic properties in rodent models. Psychopharmacol Berl 199:549–568

    Article  CAS  Google Scholar 

  • Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacol Berl 121:66–72

    Article  CAS  Google Scholar 

  • Diaz-Mataix L, Mocaër E, Seguin L, LeDoux JE (2010) Agomelatine reduces long term memory but not acquisition or short term expression of fear memories (Abstract). Proc Am Soc Neurosci 914:24

    Google Scholar 

  • Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M (2004) Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci 24:9372–9382

    Article  PubMed  CAS  Google Scholar 

  • Donati RJ, Rasenick MM (2005) Chronic antidepressant treatment prevents accumulation of gsalpha in cholesterol-rich, cytoskeletal-associated, plasma membrane domains (lipid rafts). Neuropsychopharmacology 30:1238–1245

    PubMed  CAS  Google Scholar 

  • D’Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disord 4:183–194

    Article  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ (2001) Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders. A review and a Western blot study of synaptophysin, GAP-43 and the complexins. Brain Res Bull 55:569–578

    Article  PubMed  CAS  Google Scholar 

  • Elizalde N, Gil-Bea FJ, Ramírez MJ, Aisa B, Lasheras B, Del Rio J, Tordera RM (2008) Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: effect of antidepressant treatment. Psychopharmacol Berl 199:1–14

    Article  CAS  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1 Behavioral data. Behav Brain Res 31:47–59

    Article  PubMed  CAS  Google Scholar 

  • Flood JF, Cherkin A (1987) Fluoxetine enhances memory processing in mice. Psychopharmacol Berl 93:36–43

    Article  CAS  Google Scholar 

  • Fuchs E, Flugge G, Czeh B (2006) Remodeling of neuronal networks by stress (Review). Front Biosci 11:2746–2758

    Article  PubMed  CAS  Google Scholar 

  • Goodwin GM, Emsley R, Rembry S, Rouillon F (2009) Agomelatine prevents relapse in patients with major depressive disorder without evidence of a discontinuation syndrome: a 24-week randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 70:1128–1137

    Article  PubMed  Google Scholar 

  • Grillo CA, Piroli GG, Wood GE, Reznikov LR, McEwen BS, Reagan LP (2005) Immunocytochemical analysis of synaptic proteins provides new insights into diabetes-mediated plasticity in the rat hippocampus. Neuroscience 136:477–486

    Article  PubMed  CAS  Google Scholar 

  • Groves JO (2007) Is it time to reassess the BDNF hypothesis of depression? Mol Psychiatry 12:1079–1088

    Article  PubMed  CAS  Google Scholar 

  • Hoogenraad CC, Bradke F (2009) Control of neuronal polarity and plasticity—a renaissance for microtubules? Trends Cell Biol 19:669–676

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Viesselmann C, Nam S, Merriam E, Dent EW (2008) Activity-dependent dynamic microtubule invasion of dendritic spines. J Neurosci 28:13094–13105

    Article  PubMed  CAS  Google Scholar 

  • Huber G, Matus A (1984) Differences in the cellular distributions of two microtubule-associated proteins, MAP1 and MAP2, in rat brain. J Neurosci 4:151–160

    PubMed  CAS  Google Scholar 

  • Hunt CA, Schenker LJ, Kennedy MB (1996) PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. J Neurosci 16:1380–1388

    PubMed  CAS  Google Scholar 

  • Iwata M, Shirayama Y, Ishida H, Kawahara R (2006) Hippocampal synapsin I, growth-associated protein-43, and microtubule-associated protein-2 immunoreactivity in learned helplessness rats and antidepressant-treated rats. Neuroscience 141:1301–1313

    Article  PubMed  CAS  Google Scholar 

  • Jaffard R, Toumane A, Mocaër E (1993) Facilitatory effects of S-20098 on learning and memory in mice depend on circadian rhythms. Eur Neuropharmacol 3:5–27, (3 spec), 449

    Article  Google Scholar 

  • Janke C, Kneussel M (2010) Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci 33:362–372

    Article  PubMed  CAS  Google Scholar 

  • Jarzynka MJ, Passey DK, Johnson DA, Konduru NV, Fitz NF, Radio NM, Rasenick M, Benloucif S, Melan MA, Witt-Enderby PA (2009) Microtubules modulate melatonin receptors involved in phase-shifting circadian activity rhythms: in vitro and in vivo evidence. J Pineal Res 46:161–171

    Article  PubMed  CAS  Google Scholar 

  • Jaworski J, Kapitein LC, Gouveia SM, Dortland BR, Wulf PS, Grigoriev I, Camera P, Spangler SA, Di Stefano P, Demmers J, Krugers H, Defilippi P, Akhmanova A, Hoogenraad CC (2009) Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61:85–100

    Article  PubMed  CAS  Google Scholar 

  • Kalcheva N, Albala J, O’Guin K, Rubino H, Garner C, Shafit-Zagardo B (1995) Genomic structure of human microtubule-associated protein 2 (MAP-2) and characterization of additional MAP-2 isoforms. PNAS 92:10894–10898

    Article  PubMed  CAS  Google Scholar 

  • Kennedy SH (2009) Agomelatine: efficacy at each phase of antidepressant treatment. CNS Drugs 23(Suppl 2):41–47

    Article  PubMed  CAS  Google Scholar 

  • Kennedy SH, Rizvi SJ (2010) Agomelatine in the treatment of major depressive disorder: potential for clinical effectiveness (Review). CNS Drugs 24:479–499

    Article  PubMed  CAS  Google Scholar 

  • Khawaja S, Gundersen GG, Bulinski JC (1988) Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination level. J Cell Biol 106:141–149

    Article  PubMed  CAS  Google Scholar 

  • Khuchua Z, Wozniak DF, Bardgett ME, Yue Z, McDonald M, Boero J, Hartman RE, Sims H, Strauss AW (2003) Deletion of the N-terminus of murine map2 by gene targeting disrupts hippocampal ca1 neuron architecture and alters contextual memory. Neuroscience 119:101–111

    Article  PubMed  CAS  Google Scholar 

  • Kretz O, Fester L, Wehrenberg U, Zhou L, Brauckmann S, Zhao S, Prange-Kiel J, Naumann T, Jarry H, Frotscher M, Rune GM (2004) Hippocampal synapses depend on hippocampal estrogen synthesis. J Neurosci 24:5913–5921

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Solivan F (2010) Dentate gyrus is necessary for disambiguating similar object-place representations. Learn Mem 17:252–258

    Article  PubMed  Google Scholar 

  • Lôo H, Hale A, D’Haenen H (2002) Determination of the dose of agomelatine, a melatoninergic agonist and selective 5-HT2C antagonist, in the treatment of major depressive disorder: a placebo-controlled dose range study. Int Clin Psychopharmacol 17:239–247

    Article  PubMed  Google Scholar 

  • Ma L, Wang DD, Zhang TY, Yu H, Wang Y, Huang SH, Lee FS, Chen ZY (2011) Region-specific involvement of BDNF secretion and synthesis in conditioned taste aversion memory formation. J Neurosci 31:2079–2090

    Article  PubMed  CAS  Google Scholar 

  • Micale V, Arezzi A, Rampello L, Drago F (2006) Melatonin affects the immobility time of rats in the forced swim test: the role of serotonin neurotransmission. Eur Neuropsychopharmacol 16:538–545

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Gobert A, Lejeune F, Dekeyne A, Newman-Tancredi A, Pasteau V, Rivet JM, Cussac D (2003) The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther 306:954–964

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Brocco M, Gobert A, Dekeyne A (2005) Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: role of 5-HT(2C) receptor blockade. Psychopharmacol 177:1–12

    Google Scholar 

  • Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Asakura M, Sasuga Y, Osada K, Bodaiji N, Imafuku J, Aoba A (1997) Effects of long-term treatment with desipramine on microtubule proteins in rat cerebral cortex. Eur J Pharmacol 333:279–287

    Article  PubMed  CAS  Google Scholar 

  • Morley-Fletcher S, Mairesse J, Soumier A, Banasr M, Fagioli F, Gabriel C, Mocaer E, Daszuta A, McEwen B, Nicoletti F, Maccari S (2011) Chronic agomelatine treatment corrects behavioral, cellular, and biochemical abnormalities induced by prenatal stress in rats. Psychopharmacoly (Berl) 217(3):301–313

    Article  CAS  Google Scholar 

  • Nakayama T, Sawada T (2002) Involvement of microtubule integrity in memory impairment caused by colchicine. Pharmacol Biochem Behav 71:119–138

    Article  PubMed  CAS  Google Scholar 

  • Naudon L, Hotte M, Jay TM (2007) Effects of acute and chronic antidepressant treatments on memory performance: a comparison between paroxetine and imipramine. Psychopharmacol Berl 191:353–364

    Article  CAS  Google Scholar 

  • Olié JP, Kasper S (2007) Efficacy of agomelatine, a MT1/MT2 receptor agonist and 5-HT2C antagonistic properties, in major depressive disorder. Int J Neuropsychopharmacol 10:661–673

    PubMed  Google Scholar 

  • Païzanis E, Renoir T, Lelievre V, Saurini F, Melfort M, Gabriel C, Barden N, Mocaër E, Hamon M, Lanfumey L (2010) Behavioural and neuroplastic effects on the new generation antidepressant agomelatine compared to fluoxetine in glucocorticoid receptor-impaired mice. Int J Neuropsychopharmacol 13:759–774

    Article  PubMed  Google Scholar 

  • Palazzo A, Ackerman B, Gundersen GG (2003) Cell biology: tubulin acetylation and cell motility. Nature 421:230

    Article  PubMed  CAS  Google Scholar 

  • Papp M, Gruca P, Boyer PA, Mocaër E (2003) Effect of agomelatine in the chronic mild stress model of depression in the rat. Neuropsychopharmacology 28:694–703

    Article  PubMed  CAS  Google Scholar 

  • Papp M, Litwa E, Gruca P, Mocaër E (2006) Anxiolytic-like activity of agomelatine and melatonin in three animal models of anxiety. Behav Pharmacol 17:9–18

    PubMed  CAS  Google Scholar 

  • Paturle-Lafanechere L, Manier M, Trigault N, Pirollet F, Mazarguil H, Job D (1994) Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J Cell Sci 107:1529–1543

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1996) The rat brain in stereotaxic coordinates, 2nd edn. Academic, New York

    Google Scholar 

  • Perez J, Tinelli D, Brunello N, Racagni G (1989) cAMP-dependent phosphorylation of soluble and crude microtubule fractions of rat cerebral cortex after prolonged desmethylimipramine treatment. Eur J Pharmacol 172:305–316

    Article  PubMed  CAS  Google Scholar 

  • Perez J, Tinelli D, Bianchi E, Brunello N, Racagni G (1991) cAMP binding proteins in the rat cerebral cortex after administration of selective 5-HT and NE reuptake blockers with antidepressant activity. Neuropsychopharmacology 4:57–64

    PubMed  CAS  Google Scholar 

  • Perez J, Mori S, Caivano M, Popoli M, Zanardi R, Smeraldi E, Racagni G (1995) Effects of fluvoxamine on the protein phosphorylation system associated with rat neuronal microtubules. Eur Neuropsychopharmacol 5(Suppl):65–69

    Article  PubMed  CAS  Google Scholar 

  • Philpot BD, Lim JH, Halpain S, Brunjes PC (1997) Experience-dependent modifications in MAP2 phosphorylation in rat olfactory bulb. J Neurosci 17:9596–9604

    PubMed  CAS  Google Scholar 

  • Piubelli C, Vighini M, Mathé AA, Domenici E, Carboni L (2011a) Escitalopram modulates neuron-remodelling proteins in a rat gene-environment interaction model of depression as revealed by proteomics. Part I: genetic background. Int J Neuropsychopharmacol 14:796–833

    Google Scholar 

  • Piubelli C, Vighini M, Mathé AA, Domenici E, Carboni L (2011b) Escitalopram affects cytoskeleton and synaptic plasticity pathways in a rat gene-environment interaction model of depression as revealed by proteomics. Part II: environmental challenge. Int J Neuropsychopharmacol 14:834–855

    Article  Google Scholar 

  • Piubelli C, Carboni L, Becchi S, Mathé AA, Domenici E (2011c) Regulation of cytoskeleton machinery, neurogenesis and energy metabolism pathways in a rat gene-environment model of depression revealed by proteomic analysis. Neuroscience 176:349–380

    Article  CAS  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  PubMed  CAS  Google Scholar 

  • Prieto-Gómez B, Velázquez-Paniagua M, Cisneros LO, Reyes-Vázquez C, Jiménez-Trejo F, Reyes ME, Mendoza-Torreblanca J, Gutiérrez-Ospina G (2008) Melatonin attenuates the decrement of dendritic protein MAP-2 immuno-staining in the hippocampal CA1 and CA3 fields of the aging male rat. Neurosci Lett 448:56–61

    Article  PubMed  Google Scholar 

  • Rainer Q, Xia L, Guilloux JP, Gabriel C, Mocaër E, Hen R, Enhamre E, Gardier AM, David DJ (2011) Beneficial behavioural and neurogenic effects of agomelatine in a model of depression/anxiety. Int J Neuropsychopharmacol 8:1–15

    Google Scholar 

  • Riederer BM, Draberova E, Viklicky V, Draber P (1995) Changes of MAP2 phosphorylation during brain development. J Histochem Cytochem 43:1269–1284

    Article  PubMed  CAS  Google Scholar 

  • Sánchez C, Díaz-Nido J, Avila J (2000) Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 61:133–168

    Article  PubMed  Google Scholar 

  • Schulte-Herbrüggen O, Fuchs E, Abumaria N, Ziegler A, Danker-Hopfe H, Hiemke C, Hellweg R (2009) Effects of escitalopram on the regulation of brain-derived neurotrophic factor and nerve growth factor protein levels in a rat model of chronic stress. J Neurosci Res 87:2551–2560

    Article  PubMed  Google Scholar 

  • Soumier A, Banasr M, Lortet S, Masmejean F, Bernard N, Kerkerian-Le-Goff L, Gabriel C, Millan MJ, Mocaër E, Daszuta A (2009) Mechanisms contributing to the phase-dependent regulation of neurogenesis by the novel antidepressant, agomelatine, in the adult rat hippocampus. Neuropsychopharmacology 34:2390–2403

    Article  PubMed  CAS  Google Scholar 

  • Stewart CA, Reid IC (2000) Repeated ECS and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity. Psychopharmacol Berl 148:217–223

    Article  CAS  Google Scholar 

  • Tardito D, Perez J, Tiraboschi E, Musazzi L, Racagni G, Popoli M (2006) Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: a critical overview. Pharmacol Rev 58:115–134

    Article  PubMed  CAS  Google Scholar 

  • Tian SW, Laudon M, Han L, Gao J, Huang FL, Yang YF, Deng HF (2010) Antidepressant- and anxiolytic effects of the novel melatonin agonist Neu-P11 in rodent models. Acta Pharmacol Sin 31:775–783

    Article  PubMed  CAS  Google Scholar 

  • Tuma J, Strubbe JH, Mocaër E, Koolhaas JM (2005) Anxiolytic-like action of the antidepressant agomelatine (S20098) after a social defeat requires the integrity of the SCN. Eur Neuropsychopharmacol 15:545–555

    Article  PubMed  CAS  Google Scholar 

  • Valluzzi JA, Chan K (2007) Effects of fluoxetine on hippocampal-dependent and hippocampal-independent learning tasks. Behav Pharmacol 18:507–513

    Article  PubMed  CAS  Google Scholar 

  • Varea E, Castillo-Gómez E, Gómez-Climent MA, Guirado R, Blasco-Ibáñez JM, Crespo C, Martínez-Guijarro FJ, Nácher J (2009) Differential evolution of PSA-NCAM expression during aging of the rat telencephalon. Neurobiol Aging 30:808–818

    Article  PubMed  CAS  Google Scholar 

  • Warner-Schmidt JL, Duman RS (2006) Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16:239–249

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Wang G, Wang H, Liu Z, Wang X (2009) Cytoskeletal alterations in rat hippocampus following chronic unpredictable mild stress and re-exposure to acute and chronic unpredictable mild stress. Behav Brain Res 205:518–524

    Article  PubMed  Google Scholar 

  • Zoladz PR, Park CR, Halonen JD, Salim S, Alzoubi KH, Srivareerat M, Fleshner M, Alkadhi KA, Diamond DM (2011) Differential expression of molecular markers of synaptic plasticity in the hippocampus, prefrontal cortex, and amygdala in response to spatial learning, predator exposure, and stress-induced amnesia. Hippocampus. doi:10.1002/hipo.20922

Download references

Acknowledgements

This study was carried out at MAPREG and was sponsored by Servier, Paris, France. The authors CG and EM are employees of Servier and were involved in designing of the study and approval of the report. The authors received income from their primary employer, and no other financial support or compensation has been received from any individual or corporate entity over the past 3 years for research or professional service, and there are no personal financial holdings that could be perceived as constituting a potential conflict of interest. The authors are grateful to C. Potard, C. Perier and L. Paresys for technical assistance. The authors thank Dr. R. Baeurle for reviewing the very first draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Bianchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladurelle, N., Gabriel, C., Viggiano, A. et al. Agomelatine (S20098) modulates the expression of cytoskeletal microtubular proteins, synaptic markers and BDNF in the rat hippocampus, amygdala and PFC. Psychopharmacology 221, 493–509 (2012). https://doi.org/10.1007/s00213-011-2597-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2597-5

Keywords

Navigation