Skip to main content
Log in

Fluoxetine enhances memory processing in mice

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Fluoxetine (FLU) increases brain concentrations of serotonin by blocking its uptake, without appreciably affecting the dopamine or norepinephrine systems. The present experiments provide evidence that a subcutaneous injection of FLU enhanced post-memory processing (“consolidation”) and retrieval, but not acquisition in young adult mice. FLU (15 mg/kg) enhanced 1-week memory retention when injected 2 min post-training. Similar enhancement was obtained with intracerebroventricular injection (20 μg per mouse). FLU enhanced retention when administered prior to training (1–5 mg/kg). FLU (2.5 mg/kg) enhanced recall scores when injected 1 h before the 1-week retention test, indicating an enhancing effect on memory retrieval. Neither the pre-training nor pre-testing effects depended on improved acquisition, since FLU did not improve acquisition of T-maze foot-shock avoidance over the dose range 0.5–35 mg/kg. The sensitive period for post-training enhancement by FLU (15 mg/kg) was less than 90 min, as shown by the temporal gradient typical of memory-enhancing drugs. The amnesia induced by a protein synthesis inhibitor anisomycin, or by an anticholinergic drug scopolamine, was blocked by FLU (15 mg/kg) injected post-training. Finally, FLU (15 mg/kg) injected after one-trial passive avoidance training enhanced 1-week retention, demonstrating effectiveness in this task as well as in the active avoidance task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barondes SH, Cohen HD (1968) Arousal and the conversion of “short term” to “long-term” memory. Proc Natl Acad Sci USA 61:923–929

    Article  PubMed  CAS  Google Scholar 

  • Bloch V (1976) Brain activation and memory consolidation. In: Rosenzweig MR, Bennett EL (eds) Neuronal mechanisms of learning and memory, MIT Press, Cambridge, MA, pp 583–590

    Google Scholar 

  • Broekkamp CL, Garrigou D, Lloyd KG (1980) Serotonin-mimetic and antidepressant drugs on passive avoidance learning by olfactory bulbectomised rats. Pharmacol Biochem Behav 13:643–646

    Article  PubMed  CAS  Google Scholar 

  • Buckett WR (1984) Pharmacological studies on stimulation-produced analgesia in mice. Eur J Pharmacol 69:2181–2190

    Google Scholar 

  • Davis HP, Squire LR (1984) Protein synthesis and memory: A review. Psychol Bull 96:518–559

    Article  PubMed  CAS  Google Scholar 

  • Dismukes RK, Rake AV (1972) Involvement of biogenic amines in memory formation. Psychopharmacologia 23:17–25

    Article  PubMed  CAS  Google Scholar 

  • Flood JF, Bennett EL, Rosenzweig MR, Orme AE (1972) Influence of training strength on amnesia induced by pretraining injections of cycloheximide. Physiol Behav 9:589–600

    Article  PubMed  CAS  Google Scholar 

  • Flood JF, Rosenzweig MR, Bennett EL, Orme AE (1974) Comparison of the effects of anisomycin on memory across six strains of mice. Behav Biol 10:147–160

    Article  PubMed  CAS  Google Scholar 

  • Flood JF, Bennett EL, Rosenzweig MR, Orme AE (1975) The influence of duration of protein synthesis inhibition on memory. Physiol Behav 10:555–562

    Article  Google Scholar 

  • Flood JF, Jarvik ME, Bennett EL, Orme AE, Rosenzweig MR (1977) The effect of stimulants, depressants, and protein synthesis inhibition on retention. Behav Biol 20:168–183

    Article  PubMed  CAS  Google Scholar 

  • Flood JF, Bennett EL, Orme AE, Rosenzweig MR, Jarvik ME (1978a) Memory: Modification of anisomycin-induced amnesia by stimulants and depressants. Science 199:324–326

    PubMed  CAS  Google Scholar 

  • Flood JF, Vidal D, Bennett EL, Orme AE, Vasquez S, Jarvik ME (1978b) Memory facilitating and anti-amnesic effects of corticosteroids. Pharmacol Biochem Behav 8:81–87

    Article  PubMed  CAS  Google Scholar 

  • Flood JF, Smith GE, Cherkin A (1985) Hydergine enhances memory in mice. J Pharmacol [Suppl III] 16:39–49

    PubMed  Google Scholar 

  • Flood JF, Cherkin A (1986) Scopolamine effects on memory retention in mice: A model of dementia? Behav Neural Biol 45:169–184

    Article  PubMed  CAS  Google Scholar 

  • Fuller RW (1980) Pharmacology of central serotonin neurons. Annu Rev Pharmacol Toxicol 20:111–127

    Article  PubMed  CAS  Google Scholar 

  • Fuller RW (1982) Functional consequences of inhibition serotonin uptake with fluoxetine in rats. In: Ho BT et al. (eds) Serotonin in biological psychiatry. Raven, New York, pp 219–228

    Google Scholar 

  • Fuller RW, Clemens JA, Slater IH, Rathbun RC (1978) Neuroendocrine and behavioral studies with fluoxetine, an inhibitor of serotonin uptake in brain. In: Deniker P, Radouco-Thomas C, Villeneuve A (eds) Neuro-psychopharmacology: Proceedings of the Tenth Congress of the C.I.N.P., Pergamon, Oxford New York, pp 641–646

    Google Scholar 

  • Fuller RW, Perry KW, Snoddy HD, Molloy BB (1974) Comparison of the specificity of 3-(p-trifluoromethylphenoxy)-n-methyl-3-phenylpropylamine and clorimipramine as amine uptake inhibitors in mice. Eur J Pharmacol 28:233–236

    Article  PubMed  CAS  Google Scholar 

  • Fuller RW, Rathbun RC, Parli CJ (1976) Inhibition of drug metabolism by fluoxetine. Res Commun Chem Pathol Pharmacol 19:353–356

    Google Scholar 

  • Fuller RW, Snoddy HD (1979) The effects of metergoline and other serotonin receptor antagonists on serum corticosterone in rats. Endocrinology 105:923–928

    Article  PubMed  CAS  Google Scholar 

  • Fuller RW, Snoddy HD, Molloy BB (1975) Potentiation of the 1-5-hydroxytryptophan-induced elevation of plasma corticosterone levels in rats by a specific inhibitor of serotonin uptake. Res Commun Chem Pathol Pharmacol 10:193–196

    PubMed  CAS  Google Scholar 

  • Fuller RW, Wong DT (1977) Inhibition of serotonin reuptake. Fed Proc 36:2154–2158

    PubMed  CAS  Google Scholar 

  • Garrigou D, Broekkamp CL, Lloyd KG (1981) Involvement of the amygdala in the effect of antidepressants on the passive avoidance deficit in bulbectomised rats. Psychopharmacology 74:66–70

    Article  PubMed  CAS  Google Scholar 

  • Gold PE, Delanoy RL (1981) ACTH modulation of memory storage processing. In: Martinez JL, Jr, Jensen RA, Messing RB, Rigter H, McGaugh JL (eds) Endogenous peptides and learning and memory processes, Academic, New York, pp 79–98

    Google Scholar 

  • Il'yuchenok R Yu (1976) Pharmacology of behavior and memory. Hemisphere Printing, Washington

    Google Scholar 

  • Keppel G (1973) Design and analysis: a researcher's handbook. Prentice-Hall, Englewood Cliffs, pp 556–559

    Google Scholar 

  • Kovacs GL, Tlegdy G, Lissak K (1976) 5-Hydroxytryptamine and the mediation of pituitary-adrenocortical hormones in the extinction of active avoidance behavior. Neuroendocrinology 1:219–230

    CAS  Google Scholar 

  • Lorden JF, Nunn WB (1982) Effects of central and peripheral pretreatment with fluoxetine in gustatory conditioning. Pharmacol Biochem Behav 17:435–443

    Article  PubMed  CAS  Google Scholar 

  • McElroy JF, DuPont AF, Feldman RS (1982) The effects of fenfluramine and fluoxetine on the acquisition of a conditioned avoidance response in rats. Psychopharmacology 77:356–359

    Article  PubMed  CAS  Google Scholar 

  • McGaugh JL (1973) Drug facilitation of learning and memory. Annu Rev Pharmacol Toxicol 13:229–241

    CAS  Google Scholar 

  • Messing RB, Phebus L, Fisher LA, Lytle LD (1975) Analgesic effect of fluoxetine hydrochloride. Psychopharmacol Commun 1:511–521

    PubMed  CAS  Google Scholar 

  • Myers RD (1974) Handbook of drug and chemical stimulation of the brain. Van Nostrand, New York, pp 596–647

    Google Scholar 

  • Nakajima S (1975) Amnesic effect of cycloheximide in the mouse mediated by adrenocortical hormones. J Comp Physiol Psychol 88:378–385

    Article  PubMed  CAS  Google Scholar 

  • Rake AV (1973) Involvement of biogenic amines in memory formation: The central nervous system indole amine involvement. Psychopharmacologia 29:91–100

    Article  PubMed  CAS  Google Scholar 

  • Slater HI, Jones GT, Moore RA (1978) Inhibition of REM sleep by fluoxetine, a specific inhibitor of serotonin uptake. Neuropharmacology 17:383–389

    Article  PubMed  CAS  Google Scholar 

  • Soumireu-Mourat B, Micheau J, Franc C (1981) ACTH4–9 analog (ORG2766) and memory processes in mice. In: Martinez JL, Jr, Jensen RA, Messing RB, Rigter H, McGaugh JL (eds) Endogenous peptides and learning and memory processes. Academic, New York, pp 143–158

    Google Scholar 

  • Vogel GW, Thurmond A, Gibbons P, Sloan P, Boyd M, Walker M (1975) REM sleep reduction effects on depression syndromes. Arch Gen Psychiatry 32:765–777

    PubMed  CAS  Google Scholar 

  • Winer BJ (1971) Statistical principles in experimental design. McGraw-Hill, New York, pp 196–210, 397–402

    Google Scholar 

  • Wong DT, Bymaster EP, Horng JS, Molloy BB (1975) A new selective inhibitor for uptake of serotonin into synaptosomes of rat brain: 3-(p-tri-fluoromethylphenoxy)-n-methyl-3-phenyl-propylamine. J Pharmacol Exp Ther 193:804–811

    PubMed  CAS  Google Scholar 

  • Wong DT, Bymaster FP, Reid LR, Threlkeld PG (1983) Fluoxetine and two other serotonin uptake inhibitors without affinity for neuronal receptors. Biochem Pharmacol 32:1287–1293

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flood, J.F., Cherkin, A. Fluoxetine enhances memory processing in mice. Psychopharmacology 93, 36–43 (1987). https://doi.org/10.1007/BF02439584

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02439584

Key words

Navigation