Skip to main content
Log in

Intermittent ethanol exposure increases long-lasting behavioral and neurochemical effects of MDMA in adolescent mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Heavy binge drinking is increasingly frequent among adolescents, while ethanol (EtOH) is often used in combination with 3,4-methylenedioxymethamphetamine (MDMA).

Objectives

The long-lasting effects of intermittent exposure to EtOH and MDMA during adolescence on motor activity, anxiety, and social behavior were evaluated in adult mice. The concentration of brain monoamines in the striatum, cortex, and hippocampus was measured following the behavioral test.

Methods

Adolescent OF1 mice were exposed to ethanol (1.25 g/kg) on two consecutive days at 48-h intervals over a 14-day period (from PND 29 to 42). A total of eight injections of MDMA (10 or 20 mg/kg) were administered twice daily at 4-h intervals over two consecutive days, and this schedule was repeated 6 days later (PND 33, 34, 41, and 42). Behavioral tests and analysis of brain monoamines took place on PND 64 to 67.

Results

Exposure to MDMA during adolescence increased the anxiogenic response in the elevated plus maze, with adult mice spending less time in the open arms of the maze and exhibiting lower concentrations of DA in the striatum. A pattern of ethanol administration modeling binge drinking during adolescence enhanced these effects and undermined the hyperthermic response induced by MDMA. Passive avoidance was affected only when EtOH was administered alone.

Conclusions

Juvenile administration of MDMA and alcohol was found to cause a decrease in monoamine levels in adulthood, as well as changes in social interaction behaviors, locomotor activity, increase measures of anxiety in the elevated plus maze (EPM), and decrease step-through latencies in passive avoidance test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar MA, Miñarro J, Felipo V (2000) Chronic moderate hyperammonemia impairs active and passive avoidance behavior and conditional discrimination learning in rats. Exp Neurol 161:704–713. doi:10.1006/exnr.1999.7299

    Article  PubMed  CAS  Google Scholar 

  • Barrett SP, Darredeau C, Pihl RO (2006) Patterns of simultaneous polysubstance use in drug using university students. Hum Psychopharmacol 21:255–263. doi:10.1002/hup. 766

    Article  PubMed  Google Scholar 

  • Ben Hamida S, Bach S, Plute E, Jones BC, Kelche C, Cassel JC (2006) Ethanol–ecstasy (MDMA) interactions in rats: preserved attenuation of hyperthermia and potentiation of hyperactivity by ethanol despite prior ethanol treatment. Pharmacol Biochem Behav 84:162–168. doi:10.1016/j.pbb.2006.04.023

    Article  Google Scholar 

  • Ben Hamida S, Plute E, Bach S, Lazarus C, Tracqui A, Kelche C, de Vasconcelos AP, Jones BC, Cassel JC (2007) Ethanol–MDMA interactions in rats: the importance of interval between repeated treatments in biobehavioral tolerance and sensitization to the combination. Psychopharmacology 192:555–569. doi:10.1007/s00213-007-0752-9

    Article  PubMed  Google Scholar 

  • Ben Hamida S, Plute E, Cosquer B, Kelche C, Jones BC, Cassel JC (2008) Interactions between ethanol and cocaine, amphetamine, or MDMA in the rat: thermoregulatory and locomotor effects. Psychopharmacology 197:67–82. doi:10.1007/s00213-007-1007-5

    Article  CAS  Google Scholar 

  • Brain PF, Benton D, Childs G, Parmigiani S (1981) The effect of the type of opponent in test of murine aggression. Behav Process 6:319–327. doi:10.1016/0376-6357(81)90049-8

    Article  Google Scholar 

  • Brain PF, McAllister KH, Walmsley SV (1989) Drug effects on social behaviors. In: Boulton AA, Bake GB, Greenshaw AJ (eds) Methods in ethopharmacology, psychopharmacology (series: Neuromethods), vol 13. The Humana, Clifton, pp 687–739

    Google Scholar 

  • Breen C, Degenhardt L, Kinner S, Bruno R, Jenkinson R, Matthews A, Newman J (2006) Alcohol use and risk taking among regular ecstasy users. Subst Use Misuse 41:1095–1109. doi:10.1080/10826080500411528

    Article  PubMed  Google Scholar 

  • Caamaño-Isorna F, Corral M, Parada M, Cadaveira F (2008) Factors associated with risky consumption and heavy episodic drinking among Spanish university students. J Stud Alcohol Drugs 69:308–312, PMID: 18299773 [

    PubMed  Google Scholar 

  • Cassel JC, Jeltsch H, Koenig J, Jones BC (2004) Locomotor and pyretic effects of MDMA–ethanol associations in rats. Alcohol 34:285–289. doi:10.1016/j.alcohol.2004.09.003

    Article  PubMed  CAS  Google Scholar 

  • Cassel JC, Riegert C, Rutz S, Koenig J, Rothmaier K, Cosquer B, Lazarus C, Birthelmer A, Jeltsch H, Jones BC, Jackisch R (2005) Ethanol, 3,4-methylenedioxymethamphetamine (ecstasy) and their combination: long-term behavioral, neurochemical and neuropharmacological effects in the rat. Neuropsychopharmacology 30:1870–1882. doi:10.1038/sj.npp. 1300714

    Article  PubMed  CAS  Google Scholar 

  • Cassel JC, Ben Hamida S, Jones BC (2007) Attenuation of MDMA-induced hyperthermia by ethanol in rats depends on ambient temperature. Eur J Pharmacol 571:152–155. doi:10.1016/j.ejphar.2007.06.006

    Article  PubMed  CAS  Google Scholar 

  • Clark DB, Thatcher DL, Tapert SF (2008) Alcohol, psychological dysregulation, and adolescent brain development. Alcohol Clin Exp Res 32:375–385. doi:10.1111/j.1530-0277.2007.00601

    Article  PubMed  Google Scholar 

  • Colado MI, Camarero J, Mechan AO, Sanchez V, Esteban B, Elliott JM, Green AR (2001) A study of the mechanisms involved in the neurotoxic action of 3, 4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) on dopamine neurones in mouse brain. Br J Pharmacol 134:1711–1723. doi:10.1038/sj.bjp. 0704435

    Article  PubMed  CAS  Google Scholar 

  • Crews FT, Braun CJ, Hoplight B, Switzer RC, Knapp DJ (2000) Binge ethanol consumption causes differential brain damage in young adolescent rats compared with adult rats. Alcohol Clin Exp Res 24:1712–1723. doi:10.1111/j.1530-0277.2000.tb01973

    Article  PubMed  CAS  Google Scholar 

  • Daza-Losada M, Ribeiro Do Couto B, Manzanedo C, Aguilar MA, Rodríguez-Arias M, Miñarro J (2007) Rewarding effects and reinstatement of MDMA-induced CPP in adolescent mice. Neuropsychopharmacology 32:1750–1759. doi:10.1038/sj.npp. 1301309

    Article  PubMed  CAS  Google Scholar 

  • Daza-Losada M, Rodríguez-Arias M, Maldonado C, Aguilar MA, Miñarro J (2008) Behavioural and neurotoxic long-lasting effects of MDMA plus cocaine in adolescent mice. Eur J Pharmacol 590:204–211. doi:10.1016/j.ejphar.2008.06.025

    Article  PubMed  CAS  Google Scholar 

  • Easton N, Marsden CA (2006) Ecstasy: are animal data consistent between species and can they translate to humans? J Psychopharmacol 20(2):194–210. doi:10.1177/0269881106061153

    Article  PubMed  CAS  Google Scholar 

  • ESTUDES. Informe de la encuesta estatal sobre uso de drogas en estudiantes de enseñanzas secundarias. Delegación del gobierno para el Plan Nacional sobre Drogas (2008) Ministerio de Sanidad y Política Social. Gobierno de España. http://www.pnsd.msc.es/Categoria2/observa/pdf/Estudes2008.pdf

  • Faria R, Magalhães A, Monteiro PR, Gomes-Da-Silva J, Amélia Tavares M, Summavielle T (2006) MDMA in adolescent male rats: decreased serotonin in the amygdala and behavioral effects in the elevated plus-maze test. Ann NY Acad Sci 1074:643–649. doi:10.1196/annals.1369.062

    Article  PubMed  CAS  Google Scholar 

  • Green AR, Gabrielsson J, Marsden CA, Fone KC (2009) MDMA: on the translation from rodent to human dosing. Psychopharmacology 204(2):375–378. doi:10.1007/s00213-008-1453-8

    Article  PubMed  CAS  Google Scholar 

  • Guerri C (2002) Mechanisms involved in central nervous system dysfunctions induced by prenatal ethanol exposure. Neurotox Res 4:327–335. doi:10.1080/1029842021000010884

    Article  PubMed  CAS  Google Scholar 

  • Hamida SB, Tracqui A, de Vasconcelos AP, Szwarc E, Lazarus C, Kelche C, Jones BC, Cassel JC (2009) Ethanol increases the distribution of MDMA to the rat brain: possible implications in the ethanol-induced potentiation of the psychostimulant effects of MDMA. Int J Neuropsychopharmacol 12:749–759. doi:10.1017/S1461145708009693

    Article  PubMed  Google Scholar 

  • Henry JA (1992) Ecstasy and the dance of death. BMJ 305:5–6

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Lopez C, Farre M, Roset PN, Menoyo E, Pizarro N, Ortuno J, Torrens M, Camí J, de La Torre R (2002) 3,4-Methylenedioxymethamphetamine (ecstasy) and alcohol interactions in humans: psychomotor performance, subjective effects, and pharmacokinetics. J Pharmacol Exp Ther 300:236–244. doi:10.1124/jpet.300.1.236

    Article  PubMed  CAS  Google Scholar 

  • Izco M, Marchant I, Escobedo I, Peraile I, Delgado M, Higuera-Matas A, Olias O, Ambrosio E, O'Shea E, Colado MI (2007) Mice with decreased cerebral dopamine function following a neurotoxic dose of MDMA (3, 4-methylenedioxymethamphetamine, “Ecstasy”) exhibit increased ethanol consumption and preference. J Pharmacol Exp Ther 322:1003–1012. doi:10.1124/jpet.107.120600

    Article  PubMed  CAS  Google Scholar 

  • Izco M, Gutierrez-Lopez MD, Marchant I, O’Shea E, Colado MI (2010) Administration of neurotoxic doses of MDMA reduces sensitivity to ethanol and increases GAT-1 immunoreactivity in mice striatum. Psychopharmacology 207:671–679. doi:10.1007/s00213-009-1699-9

    Article  PubMed  CAS  Google Scholar 

  • Johnson EA, O'Callaghan JP, Miller DB (2004) Brain concentrations of d-MDMA are increased after stress. Psychopharmacology 173:278–286. doi:10.1007/s00213-003-1740-3

    Article  PubMed  CAS  Google Scholar 

  • Jones BC, Ben-Hamida S, de Vasconcelos AP, Kelche C, Lazarus C, Jackisch R, Cassel JC (2010) Effects of ethanol and ecstasy on conditioned place preference in the rat. J Psychopharmacol 24:275–279. doi:10.1177/0269881109102775

    Article  PubMed  CAS  Google Scholar 

  • Miller DB, O'Callaghan JP (1994) Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270:752–760. doi:0022-3565/94/2702-0752$00.00/0

    PubMed  CAS  Google Scholar 

  • Moyano S, Del Río J, Frechilla D (2005) Acute and chronic effects of MDMA on molecular mechanisms implicated in memory formation in rat hippocampus: surface expression of CaMKII and NMDA receptor subunits. Pharmacol Biochem Behav 82:190–199. doi:10.1016/j.pbb.2005.07.020

    Article  PubMed  CAS  Google Scholar 

  • Mugford RA, Nowell NW (1970) Pheromones and their effect on aggression in mice. Nature 226:967–968. doi:10.1038/226967a0

    Article  PubMed  CAS  Google Scholar 

  • Oesterle S, Hill KG, Hawkins JD, Guo J, Catalano RF, Abbott RD (2004) Adolescent heavy episodic drinking trajectories and health in young adulthood. J Stud Alcohol 65:204–212

    PubMed  Google Scholar 

  • Oesterle S, Hill KG, Hawkins JD, Abbott RD (2008) Positive functioning and alcohol-use disorders from adolescence to young adulthood. J Stud Alcohol Drugs 69:100–111

    PubMed  Google Scholar 

  • O'Shea E, Escobedo I, Orio L, Sanchez V, Navarro M, Green AR, Colado MI (2005) Elevation of ambient room temperature has differential effects on MDMA-induced 5-HT and dopamine release in striatum and nucleus accumbens of rats. Neuropsychopharmacology 30:1312–1323. doi:10.1038/sj.npp. 1300673

    Article  PubMed  Google Scholar 

  • Pascual M, Blanco AM, Cauli O, Miñarro J, Guerri C (2007) Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats. Eur J Neurosci 25:541–550. doi:10.1111/j.1460-9568.2006.05298

    Article  PubMed  Google Scholar 

  • Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 24:525–529. doi:10.1016/0091-3057(86)90552-6

    Article  PubMed  CAS  Google Scholar 

  • Pohorecky LA, Brick J (1988) Pharmacology of ethanol. Pharmacol Ther 36:335–427

    Article  PubMed  CAS  Google Scholar 

  • Pontes H, Duarte JA, de Pinho PG, Soares ME, Fernandes E, Dinis-Oliveira RJ, Sousa C, Silva R, Carmo H, Casal S, Remião F, Carvalho F, Bastos ML (2008) Chronic exposure to ethanol exacerbates MDMA-induced hyperthermia and exposes liver to severe MDMA-induced toxicity in CD1 mice. Toxicology 252:64–71. doi:10.1016/j.tox.2008.07.064

    Article  PubMed  CAS  Google Scholar 

  • Qin M, Entezam A, Usdin K, Huang T, Liu ZH, Hoffman GE, Smith CB (2011) A mouse model of the fragile X premutation: effects on behavior, dendrite morphology, and regional rates of cerebral protein synthesis. Neurobiol Dis 42:85–98. doi:10.1016/j.nbd.2011.01.008

    Article  PubMed  CAS  Google Scholar 

  • Riegert C, Wedekind F, Hamida SB, Rutz S, Rothmaier AK, Jones BC, Cassel JC, Jackisch R (2008) Effects of ethanol and 3,4-methylenedioxymethamphetamine (MDMA) alone or in combination on spontaneous and evoked overflow of dopamine, serotonin and acetylcholine in striatal slices of the rat brain. Int J Neuropsychopharmacol 11:743–763. doi:10.1017/S1461145708008481

    Article  PubMed  CAS  Google Scholar 

  • Riley SC, James C, Gregory D, Dingle H, Cadger M (2001) Patterns of recreational drug use at dance events in Edinburgh, Scotland. Addiction 96:1035–1047. doi:10.1046/j.1360-0443.2001.967103513

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ, Cutler MG, Jackson JE (1997) Behavioural effects in mice of subchronic chlordiazepoxide, maprotiline and fluvoxamine. II. The elevated plus-maze. Pharmacol Biochem Behav 57:127–136. doi:10.1016/S0091-3057(96)00242-0

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Arias M, Minarro J, Aguilar MA, Pinazo J, Simon VM (1998) Effects of risperidone and SCH 23390 on isolation-induced aggression in male mice. Eur Neuropsychopharmacol 8:95–103. doi:10.1016/S0924-977X(97)00051-5

    Article  PubMed  CAS  Google Scholar 

  • Sakata K, Jin L, Jha S (2010) Lack of promoter IV-driven BDNF transcription results in depression-like behavior. Genes Brain Behav 9:712–721. doi:10.1111/j.1601-183X.2010.00605.x

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Schmued L (2010) Neurotoxicity of ecstasy (MDMA): an overview. Curr Pharm Biotechnol 11:460–469, PMID 20420572

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Hagan J, Dudchenko P (1992) Behavioral screening for cognition enhancers: from indiscriminate to valid testing: part I. Psychopharmacology 107:144–159. doi:10.1007/BF02245132

    Article  PubMed  CAS  Google Scholar 

  • Schifano F (1991) Chronic atypical psychosis associated with MDMA (‘ecstasy’) abuse. Lancet 338:1335. doi:10.1016/0140-6736(91)92633-D

    Article  PubMed  CAS  Google Scholar 

  • Smoothy R, Brain PF, Berry MS, Haug M (1986) Alcohol and social behaviour in group-housed female mice. Physiol Behav 37:689–694. doi:10.1016/0031-9384(86)90173-3

    Article  PubMed  CAS  Google Scholar 

  • Suzdak PD, Schwartz RD, Skolnick P, Paul SM (1988) Alcohols stimulate gamma-aminobutyric acid receptor-mediated chloride uptake in brain vesicles: correlation with intoxication potency. Brain Res 444:340–345. doi:10.1016/0006-8993(88)90943-2

    Article  PubMed  CAS  Google Scholar 

  • Tur JA, Puig MS, Pons A, Benito E (2003) Alcohol consumption among school adolescents in Palma de Mallorca. Alcohol Alcohol 38:243–248. doi:10.1093/alcalc/agg061

    PubMed  CAS  Google Scholar 

  • Upreti VV, Eddington ND, Moon KH, Song BJ, Lee IJ (2009) Drug interaction between ethanol and 3,4-methylenedioxymethamphetamine (“ecstasy”). Toxicol Lett 188:167–172. doi:10.1016/j.toxlet.2009.03.023

    Article  PubMed  CAS  Google Scholar 

  • White AM, Kraus CL, Swartzwelder H (2006) Many college freshmen drink at levels far beyond the binge threshold. Alcohol Clin Exp Res 30:1006–1010. doi:10.1111/j.1530-0277.2006.00122

    Article  PubMed  Google Scholar 

  • White AM, Swartzwelder HS (2005) Age-related effects of alcohol on memory and memory-related brain function in adolescents and adults. Recent Dev Alcohol 17:161–176

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Mr. Brian Normanly for his editing of the manuscript. This work was supported by the following grants: Ministerio de Ciencia e Innovación. Dirección General de Investigación (PSI2008-00101/PSIC), Instituto de Salud “Carlos III” (FIS), RETICS, Red de Trastornos Adictivos (RD06/001/0016 and 0019) and Generalitat Valenciana, Conselleria de Educación (PROMETEO/2009/072), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Rodríguez-Arias.

Additional information

The experimental protocol has been approved by an Institutional Review Committee for the use of animal subjects. Procedures involving mice and their care were conducted in conformity with national, regional, and local laws and regulations, which are in accordance with European Community Council Directives (86/609/EEC, 24 November 1986).

The authors have no possible conflict of interest in the carrying out and reporting of this research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Arias, M., Maldonado, C., Vidal-Infer, A. et al. Intermittent ethanol exposure increases long-lasting behavioral and neurochemical effects of MDMA in adolescent mice. Psychopharmacology 218, 429–442 (2011). https://doi.org/10.1007/s00213-011-2329-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2329-x

Keywords

Navigation