Skip to main content

Advertisement

Log in

Ethanol–MDMA interactions in rats: the importance of interval between repeated treatments in biobehavioral tolerance and sensitization to the combination

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

In our previous work, we showed that ethanol (EtOH) potentiates 3,4-methylenedioxymethamphetamine (MDMA)-induced hyperlocomotion while protecting against its hyperthermic effects. Whereas the effect on activity were found on all days (although declining over the three first days), the protection against hyperthermia completely disappeared on the second day. The latter effect was previously thought to reflect tolerance to ethanol or the combination, per se.

Objective

In the present study, we changed the treatment regimen to irregular and longer intervals between treatments (48, 120, and again 48 h) to check if tolerance was still observed.

Results

We found progressive sensitization of locomotor activity to EtOH (1.5 g/kg, i.p.)+MDMA (6.6 mg/kg, i.p.), and a partial EtOH protection against MDMA-induced hyperthermia that persisted after the first drug challenge day. When the monoamine neurotransmitters, dopamine, and serotonin were assessed 2 weeks after treatment, we found no consistent effect on the concentration of any of these neurotransmitters, whatever the treatment. Similarly, we found that regional brain concentrations of MDMA were not significantly affected by EtOH at a 45-min post-treatment delay; however, the overall ratio of the metabolite 3,4-methylenedioxyamphetamine (MDA) to MDMA was lower (overall, −16%) in animals treated with the combination compared to MDMA alone, indicating possible contribution of pharmacokinetic factors. This difference was especially marked in the striatum (−25%).

Conclusions

These findings shed new light on the consequences of EtOH–MDMA, taken together at a nearly normal ambient temperature, both in terms of motivation and potential risks for recreational drug users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ando RD, Benko A, Ferrington L, Kirilly E, Kelly PA, Bagdy G (2006) Partial lesion of the serotonergic system by a single dose of MDMA results in behavioural disinhibition and enhances acute MDMA-induced social behaviour on the social interaction test. Neuropharmacology 50:884–896

    Article  PubMed  CAS  Google Scholar 

  • Balogh B, Molnar E, Jakus R, Quate L, Olverman HJ, Kelly PA, Kantor S, Bagdy G (2004) Effects of a single dose of 3,4-methylenedioxymethamphetamine on circadian patterns, motor activity and sleep in drug-naive rats and rats previously exposed to MDMA. Psychopharmacology (Berl) 173:296–309

    Article  CAS  Google Scholar 

  • Bankson MG, Cunningham KA (2001) 3,4-Methylenedioxymethamphetamine (MDMA) as a unique model of serotonin receptor function and serotonin-dopamine interactions. J Pharmacol Exp Ther 297:846–852

    PubMed  CAS  Google Scholar 

  • Barrett SP, Darredeau C, Pihl RO (2006) Patterns of simultaneous polysubstance use in drug using university students. Hum Psychopharmacol 21:255–263

    Article  PubMed  Google Scholar 

  • Baumann MH, Wang X, Rothman RB (2007) 3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings. Psychopharmacology (Berl) 189(4):407–424

    Article  CAS  Google Scholar 

  • Ben Hamida S, Bach S, Plute E, Jones BC, Kelche C, Cassel JC (2006) Ethanol-ecstasy (MDMA) interactions in rats: preserved attenuation of hyperthermia and potentiation of hyperactivity by ethanol despite prior ethanol treatment. Pharmacol Biochem Behav 84:162–168

    Article  Google Scholar 

  • Beveridge TJ, Mechan AO, Sprakes M, Pei Q, Zetterstrom TS, Green AR, Elliott JM (2004) Effect of 5-HT depletion by MDMA on hyperthermia and Arc mRNA induction in rat brain. Psychopharmacology (Berl) 173:346–352

    Article  CAS  Google Scholar 

  • Bexis S, Phillis BD, Ong J, White JM, Irvine RJ (2004) Baclofen prevents MDMA-induced rise in core body temperature in rats. Drug Alcohol Depend 74:89–96

    Article  PubMed  CAS  Google Scholar 

  • Bishop C, Kamdar DP, Walker PD (2003) Intrastriatal serotonin 5-HT2 receptors mediate dopamine D1-induced hyperlocomotion in 6-hydroxydopamine-lesioned rats. Synapse 50:164–170

    Article  PubMed  CAS  Google Scholar 

  • Broening HW, Bowyer JF, Slikker W Jr (1995) Age-dependent sensitivity of rats to the long-term effects of the serotonergic neurotoxicant (±)-3,4-methylenedioxymethamphetamine (MDMA) correlates with the magnitude of the MDMA-induced thermal response. J Pharmacol Exp Ther 275:325–333

    PubMed  CAS  Google Scholar 

  • Bull EJ, Porkess V, Rigby M, Hutson PH, Fone KC (2006) Pre-treatment with 3,4-methylenedioxymethamphetamine (MDMA) causes long-lasting changes in 5-HT2A receptor-mediated glucose utilization in the rat brain. J Psychopharmacol 20:272–280

    Article  PubMed  CAS  Google Scholar 

  • Callaway CW, Wing LL, Geyer MA (1990) Serotonin release contributes to the locomotor stimulant effects of 3,4-methylenedioxymethamphetamine in rats. J Pharmacol Exp Ther 254:456–464

    PubMed  CAS  Google Scholar 

  • Cassel JC, Jeltsch H, Koenig J, Jones BC (2004) Locomotor and pyretic effects of MDMA-ethanol associations in rats. Alcohol 34:285–289

    Article  PubMed  CAS  Google Scholar 

  • Cassel JC, Riegert C, Rutz S, Koenig J, Rothmaier K, Cosquer B, Lazarus C, Birthelmer A, Jeltsch H, Jones BC, Jackisch R (2005) Ethanol, 3,4-methylenedioxymethamphetamine (ecstasy) and their combination: long-term behavioral, neurochemical and neuropharmacological effects in the rat. Neuropsychopharmacology 30:1870–1882

    Article  PubMed  CAS  Google Scholar 

  • Chan AW, York JL (1994) Influence of age on the development of rapid tolerance to ethanol. Pharmacol Biochem Behav 47:567–573

    Article  PubMed  CAS  Google Scholar 

  • Chu T, Kumagai Y, Distefano EW, Cho AK (1996) Disposition of methylenedioxymethamphetamine and three metabolites in the brains of different rat strains and their possible roles in acute serotonin depletion. Biochem Pharmacol 51:789–796

    Article  PubMed  CAS  Google Scholar 

  • Colado MI, O’shea E, Granados R, Esteban B, Martin AB, Green AR (1999) Studies on the role of dopamine in the degeneration of 5-HT nerve endings in the brain of Dark Agouti rats following 3,4-methylenedioxymethamphetamine (MDMA or ‘ecstasy’) administration. Br J Pharmacol 126:911–924

    Article  PubMed  CAS  Google Scholar 

  • Colboc O, Costentin J (1980) Evidence for thermoregulatory dopaminergic receptors located in the preopticus medialis nucleus of the rat hypothalamus. J Pharm Pharmacol 32:624–629

    PubMed  CAS  Google Scholar 

  • Corbett D, Evans S, Thomas C, Wang D, Jonas RA (1990) MK-801 reduced cerebral ischemic injury by inducing hypothermia. Brain Res 514:300–304

    Article  PubMed  CAS  Google Scholar 

  • Dafters RI (1994) Effect of ambient temperature on hyperthermia and hyperkinesis induced by 3,4-methylenedioxymethamphetamine (MDMA or ‘ecstasy’) in rats. Psychopharmacology (Berl) 114:505–508

    Article  CAS  Google Scholar 

  • Dafters RI (1995) Hyperthermia following MDMA administration in rats: effects of ambient temperature, water consumption, and chronic dosing. Physiol Behav 58:877–882

    Article  PubMed  CAS  Google Scholar 

  • Dafters RI, Lynch E (1998) Persistent loss of thermoregulation in the rat induced by 3,4-methylenedioxymethamphetamine (MDMA or ‘ecstasy’) but not by fenfluramine. Psychopharmacology (Berl) 138:207–212

    Article  CAS  Google Scholar 

  • Daniel WA, Wojcikowski J, Palucha A (2001) Intracellular distribution of psychotropic drugs in the grey and white matter of the brain: the role of lysosomal trapping. Br J Pharmacol 134:807–814

    Article  PubMed  CAS  Google Scholar 

  • De La Garza R, Fabrizio KR, Gupta A (2007) Relevance of rodent models of intravenous MDMA self-administration to human MDMA consumption patterns. Psychopharmacology (Berl) 189:425–434

    Article  CAS  Google Scholar 

  • de la Torre R, Farre M (2004) Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol Sci 25:505–508

    Article  PubMed  Google Scholar 

  • Easton N, Marsden CA (2006) Ecstasy: are animal data consistent between species and can they translate to humans? J Psychopharmacol 20:194–210

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald RL, Blanke RV, Poklis A (1990) Stereoselective pharmacokinetics of 3,4-methylenedioxymethamphetamine in the rat. Chirality 2:241–248

    Article  PubMed  CAS  Google Scholar 

  • Freedman RR, Johanson CE, Tancer ME (2005) Thermoregulatory effects of 3,4-methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology (Berl) 183:248–256

    Article  CAS  Google Scholar 

  • Gold LH, Koob GF (1989) MDMA produces stimulant-like conditioned locomotor activity. Psychopharmacology (Berl) 99:352–356

    Article  CAS  Google Scholar 

  • Gold LH, Hubner CB, Koob GF (1989) A role for the mesolimbic dopamine system in the psychostimulant actions of MDMA. Psychopharmacology (Berl) 99:40–47

    Article  CAS  Google Scholar 

  • Gough B, Ali SF, Slikker W Jr, Holson RR (1991) Acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on monoamines in rat caudate. Pharmacol Biochem Behav 39:619–623

    Article  PubMed  CAS  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  PubMed  CAS  Google Scholar 

  • Green AR, O’Shea E, Colado MI (2004a) A review of the mechanisms involved in the acute MDMA (ecstasy)-induced hyperthermic response. Eur J Pharmacol 500:3–13

    Article  PubMed  CAS  Google Scholar 

  • Green AR, Sanchez V, O’Shea E, Saadat KS, Elliott JM, Colado MI (2004b) Effect of ambient temperature and a prior neurotoxic dose of 3,4-methylenedioxymethamphetamine (MDMA) on the hyperthermic response of rats to a single or repeated (‘binge’ ingestion) low dose of MDMA. Psychopharmacology (Berl) 173:264–269

    Article  CAS  Google Scholar 

  • Green AR, O’Shea E, Saadat KS, Elliott JM, Colado MI (2005) Studies on the effect of MDMA (‘ecstasy’) on the body temperature of rats housed at different ambient room temperatures. Br J Pharmacol 146:306–312

    Article  PubMed  CAS  Google Scholar 

  • Gudelsky GA, Koenig JI, Meltzer HY (1986) Thermoregulatory responses to serotonin (5-HT) receptor stimulation in the rat. Evidence for opposing roles of 5-HT2 and 5-HT1A receptors. Neuropharmacology 25:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Lopez C, Farre M, Roset PN, Menoyo E, Pizarro N, Ortuno J, Torrens M, Cami J, de la Torre R (2002) 3,4-Methylenedioxymethamphetamine (ecstasy) and alcohol interactions in humans: psychomotor performance, subjective effects, and pharmacokinetics. J Pharmacol Exp Ther 300:236–244

    Article  PubMed  CAS  Google Scholar 

  • Hetzler BE, Burkard HK (1999) Effects of dizocilpine (MK-801) on flash-evoked potentials, body temperature, and locomotor activity of hooded rats. Pharmacol Biochem Behav 62:559–573

    Article  PubMed  CAS  Google Scholar 

  • Hopfer C, Mendelson B, Van Leeuwen JM, Kelly S, Hooks S (2006) Club drug use among youths in treatment for substance abuse. Am J Addict 15:94–99

    Article  PubMed  Google Scholar 

  • Huttunen P, Lapinlampi T, Myers RD (1988) Temperature-related release of serotonin from unrestrained rats’ pre-optic area perfused with ethanol. Alcohol 5:189–193

    Article  PubMed  CAS  Google Scholar 

  • Iravani MM, Asari D, Patel J, Wieczorek WJ, Kruk ZL (2000) Direct effects of 3,4-methylenedioxymethamphetamine (MDMA) on serotonin or dopamine release and uptake in the caudate putamen, nucleus accumbens, substantia nigra pars reticulata, and the dorsal raphe nucleus slices. Synapse 36:275–285

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata T, Saito T, Hasegawa H, Yazawa T, Otokawa M, Aihara Y (2004) Changes of body temperature and extracellular serotonin level in the preoptic area and anterior hypothalamus after thermal or serotonergic pharmacological stimulation of freely moving rats. Life Sci 75:2665–2675

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata T, Saito T, Hasegawa H, Yazawa T, Kotani Y, Otokawa M, Aihara Y (2005) Changes of body temperature and thermoregulatory responses of freely moving rats during GABAergic pharmacological stimulation to the preoptic area and anterior hypothalamus in several ambient temperatures. Brain Res 1048:32–40

    Article  PubMed  CAS  Google Scholar 

  • Jaehne EJ, Salem A, Irvine RJ (2005) Effects of 3,4-methylenedioxymethamphetamine and related amphetamines on autonomic and behavioral thermoregulation. Pharmacol Biochem Behav 81:485–496

    Article  PubMed  CAS  Google Scholar 

  • Jansen KL (1999) Ecstasy (MDMA) dependence. Drug Alcohol Depend 53:121–124

    Article  PubMed  CAS  Google Scholar 

  • Johnson EA, O’Callaghan JP, Miller DB (2004) Brain concentrations of d-MDMA are increased after stress. Psychopharmacology (Berl) 173:278–286

    Article  CAS  Google Scholar 

  • Jones DC, Lau SS, Monks TJ (2004) Thioether metabolites of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine inhibit human serotonin transporter (hSERT) function and simultaneously stimulate dopamine uptake into hSERT-expressing SK-N-MC cells. J Pharmacol Exp Ther 311:298–306

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW (1995) Interactions between dopamine and excitatory amino acids in behavioral sensitization to psychostimulants. Drug Alcohol Depend 37:95–100

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P, White SR (1998) MDMA elicits behavioral and neurochemical sensitization in rats. Neuropsychopharmacology 18:469–479

    Article  PubMed  CAS  Google Scholar 

  • Khanna JM, Chau A, Shah G (1996) Characterization of the phenomenon of rapid tolerance to ethanol. Alcohol 13:621–628

    Article  PubMed  CAS  Google Scholar 

  • Lee TF, Mora F, Myers RD (1985) Dopamine and thermoregulation: an evaluation with special reference to dopaminergic pathways. Neurosci Biobehav Rev 9:589–598

    Article  PubMed  CAS  Google Scholar 

  • Liechti ME, Kunz I, Kupferschmidt H (2005) Acute medical problems due to ecstasy use. Case-series of emergency department visits. Swiss Med Wkly 135:652–657

    PubMed  Google Scholar 

  • Lin MT, Chandra A (1981) Blockade of nicotinic receptors in brain with d-tubocurarine induces decreased metabolism, cutaneous vasodilation and hypothermia in rats. Experientia 37:986–988

    Article  PubMed  CAS  Google Scholar 

  • Lora-Tamayo C, Tena T, Rodriguez A, Moreno D, Sancho JR, Ensenat P, Muela F (2004) The designer drug situation in Ibiza. Forensic Sci Int 140:195–206

    Article  PubMed  CAS  Google Scholar 

  • Malberg JE, Seiden LS (1998) Small changes in ambient temperature cause large changes in 3,4-methylenedioxymethamphetamine (MDMA)-induced serotonin neurotoxicity and core body temperature in the rat. J Neurosci 18:5086–5094

    PubMed  CAS  Google Scholar 

  • Mallick BN, Jha SK, Islam F (2002) Presence of alpha-1 adrenoreceptors on thermosensitive neurons in the medial preoptico-anterior hypothalamic area in rats. Neuropharmacology 42:697–705

    Article  PubMed  CAS  Google Scholar 

  • Malpass A, White JM, Irvine RJ, Somogyi AA, Bochner F (1999) Acute toxicity of 3,4-methylenedioxymethamphetamine (MDMA) in Sprague–Dawley and Dark Agouti rats. Pharmacol Biochem Behav 64:29–34

    Article  PubMed  CAS  Google Scholar 

  • Marston HM, Reid ME, Lawrence JA, Olverman HJ, Butcher SP (1999) Behavioural analysis of the acute and chronic effects of MDMA treatment in the rat. Psychopharmacology (Berl) 144:67–76

    Article  CAS  Google Scholar 

  • McGregor IS, Gurtman CG, Morley KC, Clemens KJ, Blokland A, Li KM, Cornish JL, Hunt GE (2003) Increased anxiety and “depressive” symptoms months after MDMA (“ecstasy”) in rats: drug-induced hyperthermia does not predict long-term outcomes. Psychopharmacology (Berl) 168:465–474

    Article  CAS  Google Scholar 

  • Mechan AO, O’Shea E, Elliott JM, Colado MI, Green AR (2001) A neurotoxic dose of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) to rats results in a long-term defect in thermoregulation. Psychopharmacology (Berl) 155:413–418

    Article  CAS  Google Scholar 

  • Mechan AO, Esteban B, O’Shea E, Elliott JM, Colado MI, Green AR (2002) The pharmacology of the acute hyperthermic response that follows administration of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) to rats. Br J Pharmacol 135:170–180

    Article  PubMed  CAS  Google Scholar 

  • Mills EM, Rusyniak DE, Sprague JE (2004) The role of the sympathetic nervous system and uncoupling proteins in the thermogenesis induced by 3,4-methylenedioxymethamphetamine. J Mol Med 82:787–799

    Article  PubMed  CAS  Google Scholar 

  • Modi GM, Yang PB, Swann AC, Dafny N (2006) Chronic exposure to MDMA (ecstasy) elicits behavioral sensitization in rats but fails to induce cross-sensitization to other psychostimulants. Behav Brain Funct 2:1

    Article  PubMed  Google Scholar 

  • Montiel-Duarte C, Varela-Rey M, Oses-Prieto JA, Lopez-Zabalza MJ, Beitia G, Cenarruzabeitia E, Iraburu MJ (2002) 3,4-Methylenedioxymethamphetamine (“ecstasy”) induces apoptosis of cultured rat liver cells. Biochim Biophys Acta 1588:26–32

    PubMed  CAS  Google Scholar 

  • Myers RD (1981) Alcohol’s effect on body temperature: hypothermia, hyperthermia or poikilothermia? Brain Res Bull 7:209–220

    Article  PubMed  CAS  Google Scholar 

  • Nair SG, Gudelsky GA (2006) Effect of a serotonin depleting regimen of 3,4-methylenedioxymethamphetamine (MDMA) on the subsequent stimulation of acetylcholine release in the rat prefrontal cortex. Brain Res Bull 69:382–387

    Article  PubMed  CAS  Google Scholar 

  • Narahashi T, Aistrup GL, Marszalec W, Nagata K (1999) Neuronal nicotinic acetylcholine receptors: a new target site of ethanol. Neurochem Int 35:131–141

    Article  PubMed  CAS  Google Scholar 

  • Oesterheld JR, Armstrong SC, Cozza KL (2004) Ecstasy: pharmacodynamic and pharmacokinetic interactions. Psychosomatics 45:84–87

    Article  PubMed  CAS  Google Scholar 

  • O’Hearn E, Battaglia G, De Souza EB, Kuhar MJ, Molliver ME (1988) Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity. J Neurosci 8:2788–2803

    PubMed  CAS  Google Scholar 

  • O’Loinsigh ED, Boland G, Kelly JP, O’Boyle KM (2001) Behavioural, hyperthermic and neurotoxic effects of 3,4-methylenedioxymethamphetamine analogues in the Wistar rat. Prog Neuropsychopharmacol Biol Psychiatry 25:621–638

    Article  PubMed  CAS  Google Scholar 

  • O’Shea E, Granados R, Esteban B, Colado MI, Green AR (1998) The relationship between the degree of neurodegeneration of rat brain 5-HT nerve terminals and the dose and frequency of administration of MDMA (‘ecstasy’). Neuropharmacology 37:919–926

    Article  PubMed  CAS  Google Scholar 

  • O’shea E, Escobedo I, Orio L, Sanchez V, Navarro M, Green AR, Colado MI (2005) Elevation of ambient room temperature has differential effects on MDMA-induced 5-HT and dopamine release in striatum and nucleus accumbens of rats. Neuropsychopharmacology 30:1312–1323

    Article  PubMed  CAS  Google Scholar 

  • Parrott AC (2001) Human psychopharmacology of Ecstasy (MDMA): a review of 15 years of empirical research. Hum Psychopharmacol 16:557–577

    Article  PubMed  CAS  Google Scholar 

  • Parrott AC (2005) Chronic tolerance to recreational MDMA (3,4-methylenedioxymethamphetamine) or ecstasy. J Psychopharmacol 19:71–83

    Article  PubMed  CAS  Google Scholar 

  • Piper BJ, Fraiman JB, Meyer JS (2005) Repeated MDMA (“ecstasy”) exposure in adolescent male rats alters temperature regulation, spontaneous motor activity, attention, and serotonin transporter binding. Dev Psychobiol 47:145–157

    Article  PubMed  CAS  Google Scholar 

  • Piper BJ, Vu HL, Safain MG, Oliver AJ, Meyer JS (2006) Repeated adolescent 3,4-methylenedioxymethamphetamine (MDMA) exposure in rats attenuates the effects of a subsequent challenge with MDMA or a 5-hydroxytryptamine(1A) receptor agonist. J Pharmacol Exp Ther 317:838–849

    Article  PubMed  CAS  Google Scholar 

  • Ramos M, Goni-Allo B, Aguirre N (2005) Administration of SCH 23390 into the medial prefrontal cortex blocks the expression of MDMA-induced behavioral sensitization in rats: an effect mediated by 5-HT2C receptor stimulation and not by D1 receptor blockade. Neuropsychopharmacology 30:2180–2191

    Article  PubMed  CAS  Google Scholar 

  • Saadat KS, O’Shea E, Colado MI, Elliott JM, Green AR (2005) The role of 5-HT in the impairment of thermoregulation observed in rats administered MDMA (‘ecstasy’) when housed at high ambient temperature. Psychopharmacology (Berl) 179:884–890

    Article  CAS  Google Scholar 

  • Salomon L, Lanteri C, Glowinski J, Tassin JP (2006) Behavioral sensitization to amphetamine results from an uncoupling between noradrenergic and serotonergic neurons. Proc Natl Acad Sci USA 103:7476–7481

    Article  PubMed  CAS  Google Scholar 

  • Schifano F (2004) A bitter pill. Overview of ecstasy (MDMA, MDA) related fatalities. Psychopharmacology (Berl) 173:242–248

    Article  CAS  Google Scholar 

  • Schifano F, Di Furia L, Forza G, Minicuci N, Bricolo R (1998) MDMA (‘ecstasy’) consumption in the context of polydrug abuse: a report on 150 patients. Drug Alcohol Depend 52:85–90

    Article  PubMed  CAS  Google Scholar 

  • Schifano F, Oyefeso A, Webb L, Pollard M, Corkery J, Ghodse AH (2003) Review of deaths related to taking ecstasy, England and Wales, 1997–2000. BMJ 326:80–81

    Article  PubMed  Google Scholar 

  • Scholey AB, Parrott AC, Buchanan T, Heffernan TM, Ling J, Rodgers J (2004) Increased intensity of ecstasy and polydrug usage in the more experienced recreational ecstasy/MDMA users: a WWW study. Addict Behav 29:743–752

    Article  PubMed  Google Scholar 

  • Schwartz PJ, Wehr TA, Rosenthal NE, Bartko JJ, Oren DA, Luetke C, Murphy DL (1995) Serotonin and thermoregulation. Physiologic and pharmacologic aspects of control revealed by intravenous m-CPP in normal human subjects. Neuropsychopharmacology 13:105–115

    Article  PubMed  CAS  Google Scholar 

  • Siliquini R, Faggiano F, Geninatti S, Versino E, Mitola B, Ippolito R (2001) Patterns of drug use among young men in Piedmont (Italy). Drug Alcohol Depend 64:329–335

    Article  PubMed  CAS  Google Scholar 

  • Steketee JD (2005) Cortical mechanisms of cocaine sensitization. Crit Rev Neurobiol 17:69–86

    PubMed  CAS  Google Scholar 

  • Stephenson CP, Hunt GE, Topple AN, McGregor IS (1999) The distribution of 3,4-methylenedioxymethamphetamine “ecstasy”-induced c-fos expression in rat brain. Neuroscience 92:1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  PubMed  CAS  Google Scholar 

  • Wish ED, Fitzelle DB, O’Grady KE, Hsu MH, Arria AM (2006) Evidence for significant polydrug use among ecstasy-using college students. J Am Coll Health 55:99–104

    Article  PubMed  Google Scholar 

  • Zeisberger E (1987) The roles of monoaminergic neurotransmitters in thermoregulation. Can J Physiol Pharmacol 65:1395–1401

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Cassel.

Electronic supplementary material

Below is the linked to the electronic supplementary material.

Fig. 6

In a very recent preliminary experiment, adult male Long–Evans rats that were naive to MDMA, but not to ethanol (they had received daily ethanol treatments over a 2-week period), were injected with MDMA (6.6 mg/kg, i.p.) combined with 0.75 or 1.5 g/kg ethanol. Their locomotor activity was recorded in exactly the same way as in the related manuscript, except that sampling was performed in 15-min intervals. Figure 6, which is provided as supplementary material, shows that the magnitude of ethanol-enhanced MDMA hyperactivity is dependent upon the dose of ethanol. The difference between both groups was significant during the first 2 h (p < 0.05) (DOC 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Hamida, S., Plute, E., Bach, S. et al. Ethanol–MDMA interactions in rats: the importance of interval between repeated treatments in biobehavioral tolerance and sensitization to the combination. Psychopharmacology 192, 555–569 (2007). https://doi.org/10.1007/s00213-007-0752-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0752-9

Keywords

Navigation