Skip to main content

Advertisement

Log in

Noise benefit in prepulse inhibition of the acoustic startle reflex

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 22 December 2010

Abstract

Rationale

Under some conditions, external sensory noise enhances cognitive functions, a phenomenon possibly involving stochastic resonance and/or enhanced central dopamine transmission. Prepulse inhibition (PPI) of the startle reflex is a robust measure of sensorimotor gating and can be modulated by activity in the cortex and basal ganglia, including the central dopamine pathways.

Objectives

Previous empirical studies suggest a differential effect of acoustic noise in normal children and children with attention-deficit hyperactivity disorder (ADHD). This study investigated the effect of acoustic noise on PPI and if dopamine transmission interacts with acoustic noise effects in a rat ADHD model.

Methods

The effect of background acoustic noise on acoustic startle response and PPI were measured with a constant prepulse to background noise ratio of 9 dB(A). Spontaneously hypertensive (SH) rats were used as the ADHD model and compared with Wistar and Sprague–Dawley rats. Microdialysis, methylphenidate treatment and 6-OHDA lesions were used to investigate interaction with dopamine transmission.

Results

Background noise facilitated PPI differently in SH rats and controls. The prefrontal cortex in SH rats had low basal dopamine concentrations, a high DOPAC/dopamine ratio and blunted dopamine release during PPI testing. Methylphenidate had small, but strain-specific, effects on startle and PPI. Bilateral 6-hydroxydopamine lesions did not alter startle or PPI.

Conclusions

Prefrontal dopamine transmission is altered in SH rats during the sensorimotor gating task of PPI of the acoustic startle, indicating increased dopamine reuptake in this ADHD rat model. We propose that noise benefit could be explored as a non-pharmacological alternative for treating neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADHD:

Attention-deficit hyperactivity disorder

PPI:

Prepulse inhibition

DA:

Dopamine

DAT:

Dopamine transporter

SH:

Spontaneously hypertensive

References

  • Bergquist F, Ludwig M, Dutia MB (2008) Role of the commissural inhibitory system in vestibular compensation in the rat. J Physiol 586:4441–4452

    Article  PubMed  CAS  Google Scholar 

  • Bialek W, Rieke F (1992) Reliability and information transmission in spiking neurons. Trends Neurosci 15:428–434

    Article  PubMed  CAS  Google Scholar 

  • Braff D, Geyer M, Swerdlow N (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacol Berl 156:234–258

    Article  CAS  Google Scholar 

  • Carboni E, Silvagni A, Valentini V, Di Chiara G (2003) Effect of amphetamine, cocaine and depolarization by high potassium on extracellular dopamine in the nucleus accumbens shell of SHR rats. An in vivo microdialysis study. Neurosci Biobehav Rev 27:653–659

    Article  PubMed  CAS  Google Scholar 

  • Castellanos FX, Fine EJ, Kaysen D, Marsh WL, Rapoport JL, Hallett M (1996) Sensorimotor gating in boys with Tourette’s syndrome and ADHD: preliminary results. Biol Psychiatry 39:33–41

    Article  PubMed  CAS  Google Scholar 

  • Cheon K, Ryu YH, Kim Y, Namkoong K, Kim C, Lee JD (2003) Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder. Eur J Nucl Med Mol Imaging 30:306–311

    Article  PubMed  CAS  Google Scholar 

  • Cragg SJ, Rice ME (2004) DAncing past the DAT at a DA synapse. Trends Neurosci 27:270–277

    Article  PubMed  CAS  Google Scholar 

  • Csomor PA, Yee BK, Vollenweider FX, Feldon J, Nicolet T, Quednow BB (2008) On the influence of baseline startle reactivity on the indexation of prepulse inhibition. Behav Neurosci 122:885–900

    Article  PubMed  Google Scholar 

  • DasBanerjee T, Middleton FA, Berger DF, Lombardo JP, Sagvolden T, Faraone SV (2008) A comparison of molecular alterations in environmental and genetic rat models of ADHD: a pilot study. Am J Med Genet B Neuropsychiatr Genet 147B:1554–1563

    Article  PubMed  CAS  Google Scholar 

  • Davids E, Zhang K, Tarazi FI, Baldessarini RJ (2003) Animal models of attention-deficit hyperactivity disorder. Brain Res Rev 42:1–21

    Article  PubMed  Google Scholar 

  • Davis M, Mansbach RS, Swerdlow NR, Campeau S, Braff DL, Geyer MA (1990) Apomorphine disrupts the inhibition of acoustic startle induced by weak prepulses in rats. Psychopharmacology 102:1–4

    Article  PubMed  CAS  Google Scholar 

  • Dougherty D, Bonab A, Spencer TJ, Rauch SL, Madras BK, Fischman AJ (1999) Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 354:2132–2133

    Article  PubMed  CAS  Google Scholar 

  • Dresel S, Krause J, Krause KH, LaFougere C, Brinkbaumer K, Kung HF, Hahn K, Tatsch K (2000) Attention deficit hyperactivity disorder: binding of [(TC)-T-99 m]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment. Eur J Nucl Med Mol Imaging 27:1518–1524

    Article  CAS  Google Scholar 

  • Faraone S, Perlis R, Doyle A, Smoller J, Goralnick J, Holmgren M, Sklar P (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Feifel D, Minassian A, Perry W (2009) Prepulse inhibition of startle in adults with ADHD. J Psychiatr Res 43:484–489

    Article  PubMed  Google Scholar 

  • Fejgin K, Pålsson E, Wass C, Finnerty N, Lowry J, Klamer D (2009) Prefrontal GABA(B) receptor activation attenuates phencyclidine-induced impairments of prepulse inhibition: involvement of nitric oxide. Neuropsychopharmacol 34:1673–1684

    Article  CAS  Google Scholar 

  • Flaten MA, Nordmark E, Elden A (2005) Effects of background noise on the human startle reflex and prepulse inhibition. Psychophysiology 42:298–305

    Article  PubMed  Google Scholar 

  • Franklin JC, Moretti NA, Blumenthal TD (2007) Impact of stimulus signal-to-noise ratio on prepulse inhibition of acoustic startle. Psychophysiology 44:339–342

    Article  PubMed  Google Scholar 

  • Gewirtz JC, Davis M (1995) Habituation of prepulse inhibition of the startle reflex using an auditory prepulse close to background noise. Behav Neurosci 109:388–395

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK, Friston KJ (2008) Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput Biol 4:e1000196

    Article  PubMed  Google Scholar 

  • Glowa J, Hansen C (1994) Differences in response to an acoustic startle stimulus among forty-six rat strains. Behav Genet 24:79–84

    Article  PubMed  CAS  Google Scholar 

  • Hänggi P (2002) Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information processing. Chemphyschem 3:285–290

    Article  PubMed  Google Scholar 

  • Hanlon M, Karayanidis F, Schall U (2009) Intact sensorimotor gating in adult attention deficit hyperactivity disorder. Int J Neuropsychopharmacol 12:701–707

    Article  PubMed  Google Scholar 

  • Hawk LW, Yartz AR, Pelham WE, Lock TM (2003) The effects of methylphenidate on prepulse inhibition during attended and ignored prestimuli among boys with attention-deficit hyperactivity disorder. Psychopharmacol Berl 165:118–127

    CAS  Google Scholar 

  • Heal D, Smith S, Kulkarni R, Rowley H (2008) New perspectives from microdialysis studies in freely moving, spontaneously hypertensive rats on the pharmacology of drugs for the treatment of ADHD. Pharmacol Biochem Behav 90:184–197

    Article  PubMed  CAS  Google Scholar 

  • Hoenig K, Hochrein A, Quednow BB, Maier W, Wagner M (2005) Impaired prepulse inhibition of acoustic startle in obsessive-compulsive disorder. Biol Psychiatry 57:1153–1158

    Article  PubMed  Google Scholar 

  • Hoffman HS, Ison JR (1980) Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol Rev 87:175–189

    Article  PubMed  CAS  Google Scholar 

  • Kinkead B, Selz KA, Owens MJ, Mandell AJ (2006) Algorithmically designed peptides ameliorate behavioral defects in animal model of ADHD by an allosteric mechanism. J Neurosci Meth 151:68–81

    Article  CAS  Google Scholar 

  • Kosko B (2006) Noise. Viking Press, New York

    Google Scholar 

  • Krause K, Dresel SH, Krause J, la Fougere C, Ackenheil M (2003) The dopamine transporter and neuroimaging in attention deficit hyperactivity disorder. Neurosci Biobehav Rev 27:605–613

    Article  PubMed  CAS  Google Scholar 

  • Larisch R, Sitte W, Antke C, Nikolaus S, Franz M, Tress W, Müller H (2006) Striatal dopamine transporter density in drug naive patients with attention-deficit/hyperactivity disorder. Nucl Med Commun 27:267–270

    Article  PubMed  Google Scholar 

  • Li S, von Oertzen T, Lindenberger U (2006) A neurocomputational model of stochastic resonance and aging. Neurocomputing 69:1553–1560

    Article  Google Scholar 

  • Lindgren HS, Andersson DR, Lagerkvist S, Nissbrandt H, Cenci MA (2010) l-DOPA-induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson's disease: temporal and quantitative relationship to the expression of dyskinesia. J Neurochem 112:1465–1476

    Article  PubMed  CAS  Google Scholar 

  • Manjarrez E, Mendez I, Martinez L, Flores A, Mirasso C (2007) Effects of auditory noise on the psychophysical detection of visual signals: cross-modal stochastic resonance. Neurosci Lett 415:231–236

    Article  PubMed  CAS  Google Scholar 

  • McDonnell MD, Abbott D (2009) What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput Biol 5:e1000348

    Article  PubMed  Google Scholar 

  • Moss F, Ward L, Sannita W (2004) Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 115:267–281

    Article  PubMed  Google Scholar 

  • Ornitz EM, Hanna GL, Detraversay J (1992) Prestimulation-induced startle modulation in attention-deficit hyperactiviy disorder and nocturnal enuresis. Psychophysiology 29:437–451

    Article  PubMed  CAS  Google Scholar 

  • Pan W, Soma R, Kwak S, Yamamoto Y (2008) Improvement of motor functions by noisy vestibular stimulation in central neurodegenerative disorders. J Neurol 255:1657–1661

    Article  PubMed  CAS  Google Scholar 

  • Perry W, Minassian A, Lopez B, Maron L, Lincoln A (2007) Sensorimotor gating deficits in adults with autism. Biol Psychiatry 61:482–486

    Article  PubMed  Google Scholar 

  • Prince J (2008) Catecholamine dysfunction in attention-deficit/hyperactivity disorder: an update. J Clin Psychopharmacol 28(3 Suppl 2):S39–S35

    Article  PubMed  CAS  Google Scholar 

  • Priplata A et al (2006) Noise-enhanced balance control in patients with diabetes and patients with stroke. Ann Neurol 59:4–12

    Article  PubMed  Google Scholar 

  • Rodríguez M, Barroso-Chinea P, Abdala P, Obeso J, González-Hernández T (2001) Dopamine cell degeneration induced by intraventricular administration of 6-hydroxydopamine in the rat: similarities with cell loss in Parkinson’s disease. Exp Neurol 169:163–181

    Article  PubMed  Google Scholar 

  • Russell VA (2007) Reprint of “Neurobiology of animal models of attention-deficit hyperactivity disorder”. J Neurosci Meth 166:I–XIV

    Article  Google Scholar 

  • Sagvolden T, Pettersen M, Larsen M (1993) Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains. Physiol Behav 54:1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M (2005) Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1239–1247

    Article  PubMed  Google Scholar 

  • Sagvolden T et al (2009) The spontaneously hypertensive rat model of ADHD—the importance of selecting the appropriate reference strain. Neuropharmacology 57:619–626

    Article  PubMed  CAS  Google Scholar 

  • Sandner G, Canal NM (2007) Relationship between PPI and baseline startle response. Cogn Neurodyn 27:37

    Google Scholar 

  • Schmajuk N, Larrauri J, Hagenbuch N, Levin E, Feldon J, Yee B (2006) Startle and prepulse inhibition as a function of background noise: a computational and experimental analysis. Behav Brain Res 170:182–196

    Article  PubMed  CAS  Google Scholar 

  • Sikström S, Söderlund G (2007) Stimulus-dependent dopamine release in attention-deficit/hyperactivity disorder. Psychol Rev 114:1047–1075

    Article  PubMed  Google Scholar 

  • Simonotto E et al (1999) fMRI studies of visual cortical activity during noise stimulation. Neurocomputing 26-27:511–516

    Article  Google Scholar 

  • Söderlund G, Sikström S, Smart A (2007) Listen to the noise: noise is beneficial for cognitive performance in ADHD. J Child Psychol Psychiatry 48:840–847

    Article  PubMed  Google Scholar 

  • Söderlund G, Sikström S, Loftesnes JM, Sonuga-Barke EJ (2010) The effects of background white noise on memory performance in inattentive school children. Behav Brain Funct 6:55

    Article  PubMed  Google Scholar 

  • Spencer TJ et al (2007) Further evidence of dopamine transporter dysregulation in adhd: a controlled pet imaging study using altropane. Biol Psychiatry 62:1059–1061

    Article  PubMed  CAS  Google Scholar 

  • Stein RB, Gossen ER, Jones KE (2005) Neuronal variability: noise or part of the signal? Nat Rev Neurosci 6:389–397

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow N, Weber M, Qu Y, Light G, Braff D (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacol Berl 199:331–388

    Article  CAS  Google Scholar 

  • Thompson TL, Moss RL (1997) Modulation of mesolimbic dopaminergic activity over the rat estrous cycle. Neurosci Lett 229:145–148

    Article  PubMed  CAS  Google Scholar 

  • Timmerman W, Westerink B (1997) Brain microdialysis of GABA and glutamate: what does it signify? Synapse 27:242–261

    Article  PubMed  CAS  Google Scholar 

  • Usher M, Feingold M (2000) Stochastic resonance in the speed of memory retrieval. Biol Cybern 83:L11–L16

    Article  PubMed  CAS  Google Scholar 

  • Van den Buuse M (2004) Prepulse inhibition of acoustic startle in spontaneously hypertensive rats. Behav Brain Res 154:331–337

    Article  PubMed  Google Scholar 

  • Vendruscolo L, Terenina-Rigaldie E, Raba F, Ramos A, Takahashi R, Mormede P (2006) A QTL on rat chromosome 7 modulates prepulse inhibition, a neuro-behavioral trait of ADHD, in a Lewis x SHR intercross. Behav Brain Funct 2:21

    Article  PubMed  Google Scholar 

  • Volkow ND et al (2009) Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA 302:1084–1091

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Fujita M, Ito Y, Okada T, Kusuoka H, Nishimura T (1997) Brain dopamine transporter in spontaneously hypertensive rats. J Nucl Med 38:470–474

    PubMed  CAS  Google Scholar 

  • Wells C, Ward LM, Chua R, Timothy Inglis J (2005) Touch noise increases vibrotactile sensitivity in old and young. Psychol Sci 16:313–320

    Article  PubMed  Google Scholar 

  • Westlund KN, Krakower TJ, Kwan S, Abell CW (1993) Intracellular distribution of monoamine oxidase A in selected regions of rat and monkey brain and spinal cord. Brain Res 612:221–230

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson D, Nicholls S, Pattenden C, Kilduff P, Milberg W (2008) Galvanic vestibular stimulation speeds visual memory recall. Exp Brain Res 189:243–248

    Article  PubMed  Google Scholar 

  • Yamamoto Y, Struzik ZR, Soma R, Ohashi K, Kwak S (2005) Noisy vestibular stimulation improves autonomic and motor responsiveness in central neurodegenerative disorders. Ann Neurol 58:175–181

    Article  PubMed  Google Scholar 

  • Yu XL, Lewis ER (1989) Studies with spike initiators: linearization by noise allows continuous signal modulation in neural networks. IEEE Trans Biomed Eng 36:36–43

    Article  PubMed  CAS  Google Scholar 

  • Zeng FG, Fu QJ, Morse R (2000) Human hearing enhanced by noise. Brain Res 869:251–255

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Ethics Committee for Animal Experiments, Gothenburg, Sweden, approved all experimental procedures. Housing, handling and procedures complied with national Swedish law, principles of laboratory animal care and the European Communities Council Directive of November 24, 1986. The study was supported by the Swedish Research Council, grant VR 421-2007-2479, Parkinsonfonden and Svenska läkaresällskapet (the Swedish Medical Association).

Potential conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Bergquist.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00213-010-2135-x

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figures (PPT 211 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pålsson, E., Söderlund, G., Klamer, D. et al. Noise benefit in prepulse inhibition of the acoustic startle reflex. Psychopharmacology 214, 675–685 (2011). https://doi.org/10.1007/s00213-010-2074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2074-6

Keywords

Navigation