Skip to main content
Log in

Improvement of motor functions by noisy vestibular stimulation in central neurodegenerative disorders

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Through the cerebellar vermis, the vestibular nerves are known to influence the basal ganglia and the limbic system. By means of noisy galvanic vestibular stimulation (GVS), it may be possible to ameliorate movement disorders, particularly akinesic symptoms, in patients with central neurodegenerative disorders. We evaluated the effect of 24-hour noisy GVS on a power-law temporal autocorrelation exponent of daytime wrist activity, separately for higher (local maxima) and lower (local minima) levels of activity, in 14 hospitalized patients. The power-law exponent for the local maxima was significantly (p < 0.002) lower with the noisy GVS than with sham stimulation, suggestive of more frequent switching behavior from low to high levels of activity or less severe akinesia. The noisy GVS may thus potentially improve certain motor dysfunctions in patients with distinct central neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert TJ, Dempesy CW, Sorenson CA (1985) Anterior cerebellar vermal stimulation: effect on behavior and basal forebrain neurochemistry in rat. Biol Psychiat 20:1267–1276

    Article  PubMed  CAS  Google Scholar 

  2. Anderson CM, Polcari A, Lowen SB, Renshaw PF, Teicher MH (2002) Effects of methylphenidate on functional magnetic resonance relaxometry of the cerebellar vermis in boys with ADHD. Am J Psychiat 159:1322–1328

    Article  PubMed  Google Scholar 

  3. Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541

    Article  PubMed  Google Scholar 

  4. Chaudhuri A, Behan PO (2000) Fatigue and basal ganglia. J Neurol Sci 179:34–42

    Article  PubMed  CAS  Google Scholar 

  5. Collins JJ, Imhoff TT, Grigg P (1996) Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. J Neurophysiol 76:642–645

    PubMed  CAS  Google Scholar 

  6. Fitzpatrick RC, Day BL (2004) Probing the human vestibular system with galvanic stimulation. J Appl Physiol 96:2301–2316

    Article  PubMed  Google Scholar 

  7. George MS, Sackeim HA, Rush AJ, Marangell LB, Nahas Z, Husain MM, Lisanby S, Burt T, Goldman J, Ballenger JC (2000) Vagus nerve stimulation: a new tool for brain research and therapy. Biol Psychiat 47:287–295

    Article  PubMed  CAS  Google Scholar 

  8. Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 115:267–281

    Article  PubMed  Google Scholar 

  9. Newlands SD, Perachio AA (2003) Central projections of the vestibular nerve: a review and single fiber study in the Mongolian gerbil. Brain Res Bull 60:475–495

    Article  PubMed  Google Scholar 

  10. Ohashi K, Nunes Amaral LA, Natelson BH, Yamamoto Y (2003) Asymmetrical singularities in real-world signals. Phys Rev E 68:065204

    Article  Google Scholar 

  11. Pan W, Ohashi K, Yamamoto Y, Kwak S (2007) Power-law temporal autocorrelation of activity reflects severity of parkinsonism. Mov Disord 22:1308–1313

    Article  PubMed  Google Scholar 

  12. Rush AJ, George MS, Sackeim HA, Marangell LB, Husain MM, Giller C, Nahas Z, Haines S, Simpson RK Jr, Goodman R (2000) Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiat 47:276–286

    Article  PubMed  CAS  Google Scholar 

  13. Rutecki P (1990) Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia 31(Suppl 2):S1–S6

    Article  PubMed  Google Scholar 

  14. Soma R, Nozaki D, Kwak S, Yamamoto Y (2003) 1/f noise outperforms white noise in sensitizing baroreflex function in the human brain. Phys Rev Lett 91:078101

    Article  PubMed  Google Scholar 

  15. Teicher MH (1995) Actigraphy and motion analysis: new tools for psychiatry. Harvard Rev Psychiat 3:18–35

    Article  CAS  Google Scholar 

  16. Wiesenfeld K, Moss F (1995) Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373:33–36

    Article  PubMed  CAS  Google Scholar 

  17. Yamamoto Y, Struzik ZR, Soma R, Ohashi K, Kwak S (2005) Noisy vestibular stimulation improves autonomic and motor responsiveness in central neurodegenerative disorders. Ann Neurol 58:175–181

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yamamoto PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, W., Soma, R., Kwak, S. et al. Improvement of motor functions by noisy vestibular stimulation in central neurodegenerative disorders. J Neurol 255, 1657–1661 (2008). https://doi.org/10.1007/s00415-008-0950-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-008-0950-3

Key words

Navigation