Skip to main content

Advertisement

Log in

Differential changes in mesolimbic dopamine following contingent and non-contingent MDMA self-administration in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

There is evidence demonstrating changes in dopamine (DA) transmission in the nucleus accumbens (NAc) related to contingent versus non-contingent drug administration.

Objectives

The aim of this study was to evaluate basal and 3,4-methylenedioxymethamphetamine (MDMA)-stimulated DA levels in the NAc of mice that had previously received contingent and non-contingent infusions of MDMA. Contingent mice were trained to self-administer MDMA (0.125 mg/kg/infusion) in 2-h sessions for 10 days. Yoked mice received either MDMA at the same dose or saline. Forty-eight hours after the last MDMA or saline administration, DA levels were measured by in vivo microdialysis before and after an MDMA (10 mg/kg, i.p.) challenge. Binding of [3H]-mazindol and [3H]-citalopram was evaluated by autoradiography.

Results

Animals receiving MDMA infusions showed significantly lower basal DA levels than the yoked saline group. A reduced activation of DA was observed following MDMA in contingent mice with respect to both yoked MDMA and saline mice. No significant alterations in DA transporter or serotonin transporter were observed in the three groups of mice.

Conclusions

These results suggest that prolonged exposure to MDMA in mice produces changes in basal DA levels after drug withdrawal and a decreased neurochemical response at the level of the mesolimbic DA reward pathway that is, in part, related to instrumental learning during self-administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Banks ML, Czoty PW, Gage HD, Bounds MC, Garg PK, Garg S, Nader MA (2008) Effects of cocaine and MDMA self-administration on serotonin transporter availability in monkeys. Neuropsychopharmacology 33:219–225

    Article  PubMed  CAS  Google Scholar 

  • Baumann MH, Clark RD, Franken FH, Rutter JJ, Rothman RB (2008) Tolerance to 3,4-methylenedioxymethamphetamine in rats exposed to single high-dose binges. Neuroscience 152:773–784

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Krasnova IN, Jayanthi S, Lyles J (2007) Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotox Res 11:183–202

    Article  PubMed  CAS  Google Scholar 

  • Clemens KJ, Van Nieuwenhuyzen PS, Li KM, Cornish JL, Hunt GE, McGregor IS (2004) MDMA ("ecstasy"), methamphetamine and their combination: long-term changes in social interaction and neurochemistry in the rat. Psychopharmacology (Berl) 173:318–325

    Article  CAS  Google Scholar 

  • Colado MI, O'Shea E, Green AR (2004) Acute and long-term effects of MDMA on cerebral dopamine biochemistry and function. Psychopharmacology (Berl) 173:249–263

    Article  CAS  Google Scholar 

  • Dalley JW, Lääne K, Theobald DE, Peña Y, Bruce CC, Huszar AC, Wojcieszek M, Everitt BJ, Robbins TW (2007) Enduring deficits in sustained visual attention during withdrawal of intravenous methylenedioxymethamphetamine self-administration in rats: results from a comparative study with d-amphetamine and methamphetamine. Neuropsychopharmacology 32:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Daniela E, Brennan K, Gittings D, Hely L, Schenk S (2004) Effect of SCH 23390 on (+/-)-3, 4-methylenedioxymethamphetamine hyperactivity and self-administration in rats. Pharmacol Biochem Behav 77:745–750

    Article  PubMed  CAS  Google Scholar 

  • Daniela E, Gittings D, Schenk S (2006) Conditioning following repeated exposure to MDMA in rats: role in the maintenance of MDMA self-administration. Behav Neurosci 120:1144–1150

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn't do. Curr Opinion in Pharmacol 7:69–76

    Article  CAS  Google Scholar 

  • Di Ciano P, Blaha CD, Phillips AG (1996) Changes in dopamine oxidation currents in the nucleus accumbens during unlimited-access self-administration of d-amphetamine by rats. Behav Pharmacol 7:714–729

    Article  PubMed  Google Scholar 

  • Easton N, Marsden CA (2006) Ecstasy: are animal data consistent between species and can they translate to humans? J Psychopharmacol 20:194–210

    Article  PubMed  CAS  Google Scholar 

  • Fantegrossi WE, Woolverton WL, Kilbourn M, Sherman P, Yuan J, Hatzidimitriou G, Ricaurte GA, Woods JH, Winger G (2004) Behavioral and neurochemical consequences of long-term intravenous self-administration of MDMA and its enantiomers by rhesus monkeys. Neuropsychopharmacology 29:1270–1281

    Article  PubMed  CAS  Google Scholar 

  • Gouzoulis-Mayfrank E, Daumann J (2006) The confounding problem of polydrug use in recreational ecstasy/MDMA users: a brief overview. J Psychopharmacol 20:188–193

    Article  PubMed  CAS  Google Scholar 

  • Granado N, O'Shea E, Bove J, Vila M, Colado MI, Moratalla R (2008) Persistent MDMA-induced dopaminergic neurotoxicity in the striatum and substantia nigra of mice. J Neurochem 107:1102–1112

    PubMed  CAS  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O'Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  PubMed  CAS  Google Scholar 

  • Gudelsky GA, Yamamoto BK (2008) Actions of 3,4-methylenedioxymethamphetamine (MDMA) on cerebral dopaminergic, serotonergic and cholinergic neurons. Pharmacol Biochem Behav. 90:198–207

    Article  PubMed  CAS  Google Scholar 

  • Hemby SE, Martin TJ, Co C, Dworkin SI, Smith JE (1995) The effects of intravenous heroin administration on extracellular nucleus accumbens dopamine concentrations as determined by in vivo microdialysis. J Pharmacol Exp Ther 273:591–598

    PubMed  CAS  Google Scholar 

  • Hemby SE, Co C, Koves TR, Smith JE, Dworkin SI (1997) Differences in extracellular dopamine concentrations in the nucleus accumbens during response-dependent and response-independent cocaine administration in the rat. Psychopharmacology (Berl) 133:7–16

    Article  CAS  Google Scholar 

  • Itzhak Y, Ali SF, Achat CN, Anderson KL (2003) Relevance of MDMA (“ecstasy”)-induced neurotoxicity to long-lasting psychomotor stimulation in mice. Psychopharmacology (Berl) 166:241–248

    CAS  Google Scholar 

  • Jacobs EH, Smit AB, de Vries TJ, Schoffelmeer AN (2003) Neuroadaptive effects of active versus passive drug administration in addiction research. Trends Pharmacol Sci 24:566–573

    Article  PubMed  CAS  Google Scholar 

  • Kindlundh-Högberg AM, Schiöth HB, Svenningsson P (2007) Repeated intermittent MDMA binges reduce DAT density in mice and SERT density in rats in reward regions of the adolescent brain. Neurotoxicology 28:1158–1169

    Article  PubMed  CAS  Google Scholar 

  • Lecca D, Cacciapaglia F, Valentini V, Acquas E, Di Chiara G (2007a) Differential neurochemical and behavioral adaptation to cocaine after response contingent and noncontingent exposure in the rat. Psychopharmacology (Berl) 191:653–667

    Article  CAS  Google Scholar 

  • Lecca D, Valentini V, Cacciapaglia F, Acquas E, Di Chiara G (2007b) Reciprocal effects of response contingent and noncontingent intravenous heroin on in vivo nucleus accumbens shell versus core dopamine in the rat: a repeated sampling microdialysis study. Psychopharmacology (Berl) 194:103–116

    Article  CAS  Google Scholar 

  • López-Giménez JF, Tecott LH, Palacios JM, Mengod G, Vilaró MT (2002) Serotonin 5- HT (2C) receptor knockout mice: autoradiographic analysis of multiple serotonin receptors. J Neurosci Res 67:69–85

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer A, Kovar KA, Schmidt WJ (2001) Changes in serotonin, dopamine and noradrenaline levels in striatum and nucleus accumbens after repeated administration of the abused drug MDMA in rats. Neurosci Lett 308:99–102

    Article  PubMed  CAS  Google Scholar 

  • Meil WM, Roll JM, Grimm JW, Lynch AM, See RE (1995) Tolerance-like attenuation to contingent and noncontingent cocaine-induced elevation of extracellular dopamine in the ventral striatum following 7 days of withdrawal from chronic treatment. Psychopharmacology (Berl) 118:338–346

    Article  CAS  Google Scholar 

  • Olausson P, Jentsch JD, Tronson N, Neve RL, Nestler EJ, Taylor JR (2006) DeltaFosB in the nucleus accumbens regulates food-reinforced instrumental behavior and motivation. J Neurosci 26:9196–9204

    Article  PubMed  CAS  Google Scholar 

  • Parrott AC (2001) Human psychopharmacology of Ecstasy (MDMA): a review of 15 years of empirical research. Hum. Psychopharmacology 16:557–577

    Article  CAS  Google Scholar 

  • Parrott AC (2005) Chronic tolerance to recreational MDMA (3,4-methylenedioxymethamphetamine) or Ecstasy. J Psychopharmacol 19:71–83

    Article  PubMed  CAS  Google Scholar 

  • Parrott AC, Buchanan T, Scholey AB, Heffernan T, Ling J, Rodgers J (2002) Ecstasy/MDMA attributed problems reported by novice, moderate and heavy recreational users. Hum Psychopharmacol 17:309–312

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin KBJ (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Phillips TJ, Kamens HM, Wheeler JM (2008) Behavioral genetic contributions to the study of addiction-related amphetamine effects. Neurosci Biobehav Rev 32:707–759

    Article  PubMed  CAS  Google Scholar 

  • Rahman S, Zhang J, Engleman EA, Corrigall WA (2004) Neuroadaptive changes in the mesoaccumbens dopamine system after chronic nicotine self-administration: a microdialysis study. Neuroscience 129:415–424

    Article  PubMed  CAS  Google Scholar 

  • Ranaldi R, Pocock D, Zereik R, Wise RA (1999) Dopamine fluctuations in the nucleus accumbens during maintenance, extinction, and reinstatement of intravenous D-amphetamine self-administration. J Neurosci 19:4102–4109

    PubMed  CAS  Google Scholar 

  • Ricaurte GA, Forno LS, Wilson MA, DeLanney LE, Irwin I, Molliver ME, Langston JW (1988) (+/-) 3,4-Methylenedioxymethamphetamine selectively damages central serotonergic neurons in nonhuman primates. JAMA 260:51–55

    Article  PubMed  CAS  Google Scholar 

  • Robledo P, Mendizábal V, Ortuño J, De la Torre R, Kieffer BL, Maldonado R (2004) The rewarding properties of MDMA are preserved in mice lacking mu-opioid receptors. Eur J Neurosci 20:853–858

    Article  PubMed  Google Scholar 

  • Robledo P, Trigo JM, Panayi F, de la Torre R, Maldonado R (2007) Behavioural and neurochemical effects of combined MDMA and THC administration in mice. Psychopharmacology (Berl) 195:255–264

    Article  CAS  Google Scholar 

  • Ryan RE, Ross SA, Drago J, Loiacono RE (2001) Dose-related neuroprotective effects of chronic nicotine in 6-hydroxydopamine treated rats, and loss of neuroprotection in α4 nicotinic receptor subunit knockout mice. Br J Pharmacol 132:1650–1656

    Article  PubMed  CAS  Google Scholar 

  • Schenk S, Gittings D, Johnstone M, Daniela E (2003) Development, maintenance and temporal pattern of self-administration maintained by ecstasy (MDMA) in rats. Psychopharmacology (Berl) 169:21–27

    Article  CAS  Google Scholar 

  • Schenk S, Hely L, Lake B, Daniela E, Gittings D, Mash DC (2007) MDMA self-administration in rats: acquisition, progressive ratio responding and serotonin transporter binding. Eur J Neurosci 26:3229–3236

    Article  PubMed  Google Scholar 

  • Taylor JR, Jentsch JD (2001) Repeated intermittent administration of psychomotor stimulant drugs alters the acquisition of Pavlovian approach behavior in rats: differential effects of cocaine, d-amphetamine and 3, 4-methylenedioxymethamphetamine (“Ecstasy”). Biol Psychiatry 50:137–143

    Article  PubMed  CAS  Google Scholar 

  • Thompson MR, Callaghan PD, Hunt GE, McGregor IS (2008) Reduced sensitivity to MDMA-induced facilitation of social behaviour in MDMA pre-exposed rats. Prog Neuropsychopharmacol Biol Psychiatry 32:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Trigo JM, Panayi F, Soria G, MaldonadoR RP (2006) A reliable model of intravenous MDMA self-administration in naive mice. Psychopharmacology (Berl) 184:212–220

    Article  CAS  Google Scholar 

  • Trigo JM, Renoir T, Lanfumey L, Hamon M, Lesch KP, Robledo P, Maldonado R (2007) 3,4-Methylenedioxymethamphetamine self-administration is abolished in serotonin transporter knockout mice. Biol Psychiatry 62:669–679

    Article  PubMed  CAS  Google Scholar 

  • Verkes RJ, Gijsman HJ, Pieters MS, Schoemaker RC, de Visser S, Kuijpers M, Pennings EJ, de Bruin D, Van de Wijngaart G, Van Gerven JM, Cohen AF (2001) Cognitive performance and serotonergic function in users of ecstasy. Psychopharmacology (Berl) 153:196–202

    Article  CAS  Google Scholar 

  • Vollenweider FX, Liechti ME, Gamma A, Greer G, Geyer M (2002) Acute psychological and neurophysiological effects of MDMA in humans. J Psychoactive Drugs 34:171–184

    PubMed  Google Scholar 

  • Zakzanis KK, Campbell Z, Jovanovski D (2007) The neuropsychology of ecstasy (MDMA) use: a quantitative review. Hum Psychopharmacol 22:427–435

    Article  PubMed  CAS  Google Scholar 

  • Zapata A, Chefer VI, Ator R, Shippenberg TS, Rocha BA (2003) Behavioural sensitization and enhanced dopamine response in the nucleus accumbens after intravenous cocaine self-administration in mice. Eur J Neurosci 17:590–596

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Dulce Real and Dr. Andrea Herrera for their contribution in the microdialysis experiments and Ms. Marta Linares for her valuable assistance with histological work. This work was supported by FIS grant number PI070709 (PR), Plan Nacional Sobre Drogas 2005 (PR), NIH-NIDA (USA), Extramural research project (5 R01 DA016768), I.S. CARLOS III Redes de grupos ISCIII (RTAG03/005), Ministerio de Ciencia y Tecnología (SAF2007-64062), Generalitat de Catalunya 2005SGR00131, GENADDICT LSHM-CT-2004-05166, and PHECOMP (LSH-FP6-037669).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafael Maldonado or Patricia Robledo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orejarena, M.J., Berrendero, F., Maldonado, R. et al. Differential changes in mesolimbic dopamine following contingent and non-contingent MDMA self-administration in mice. Psychopharmacology 205, 457–466 (2009). https://doi.org/10.1007/s00213-009-1554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1554-z

Keywords

Navigation