Skip to main content
Log in

Neurotoxicity of substituted amphetamines: Molecular and cellular mechanisms

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The amphetamines, including amphetamine (AMPH), methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA), are among abused drugs in the US and throughout the world. Their abuse is associated with severe neurologic and psychiatric adverse events including the development of psychotic states. These neuropsychiatric complications might, in part, be related to drug-induced neurotoxic effects, which include damage to dopaminergic and serotonergic terminals, neuronal apoptosis, as well as activated astroglial and microglial cells in the brain. The purpose of the present review is to summarize the toxic effects of AMPH, METH and MDMA. The paper also presents some of the factors that are thought to underlie this toxicity. These include oxidative stress, hyperthermia, excitotoxicity and various apoptotic pathways. Better understanding of the cellular and molecular mechanisms involved in their toxicity should help to generate modern therapeutic approaches to prevent or attenuate the long-term consequences of amphetamine use disorders in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abekawa T, T Ohmori and T Koyama (1994) Effects of repeated administration of a high dose of methamphetamine on dopamine and glutamate release in rat striatum and nucleus accumbens.Brain Res. 643, 276–281.

    PubMed  CAS  Google Scholar 

  • Albers DS and PK Sonsalla (1995) Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents.J. Pharmacol. Exp. Ther. 275, 1104–1114.

    PubMed  CAS  Google Scholar 

  • Ali SF, JL Martin, MD Black and Y Itzhak (1999) Neuroprotective role of melatonin in methamphetamine-and 1 -methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity. Ann.NYAcad. Sci. 890, 119.

    CAS  Google Scholar 

  • Alldredge BK, DH Lowenstein and RP Simon (1989) Seizures associated with recreational drug abuse.Neurology 39, 1037–1039.

    PubMed  CAS  Google Scholar 

  • Amato JL, MG Bankson and BK Yamamoto (2006) Prior Exposure to chronic stress and MDMA potentiates meso-accumbens dopamine release mediated by the 5-HT(1B) receptor.Neuropsychopharmacology 2006 Aug 2; [Epub ahead of print].

  • Asanuma M, T Hayashi, SV Ordonez, N Ogawa and JL Cadet (2000) Direct interactions of methamphetamine with the nucleus.Brain Res. Mol.Brain Res. 80, 237–243.

    PubMed  CAS  Google Scholar 

  • Asanuma M, T Tsuji, I Miyazaki, K Miyoshi and N Ogawa (2003) Methamphetamine-induced neurotoxicity in mouse brain is attenuated by ketoprofen, a non-steroidal anti-inflammatory drug.Neurosci. Lett. 352, 13–16.

    PubMed  CAS  Google Scholar 

  • Atlante A, P Calissano, A Bobba, S Giannattasio, E Marra and S Passarella (2001) Glutamate neurotoxicity, oxidative stress and mitochondria.FEBS Lett. 497, 1–5.

    PubMed  CAS  Google Scholar 

  • Augsburger M, N Donze, A Menetrey, C Brossard, F Sporkert, C Giroud and P Mangin (2005) Concentration of drugs in blood of suspected impaired drivers.Forensic Sci. Int. 153, 11–15.

    PubMed  CAS  Google Scholar 

  • Baker A and T Meert (2003) Morphine and d-amphetamine nullify each others’ hypothermic effects in mice.Pharmacol. Toxicol. 92, 64–70.

    PubMed  CAS  Google Scholar 

  • Baldwin HA, MI Colado, TK Murray, RJ De Souza and AR Green (1993) Striatal dopamine releasein vivo following neurotoxic doses of methamphetamine and effect of the neuroprotective drugs, chlormethiazole and dizocilpine.Br. J. Pharmacol. 108, 590–596.

    PubMed  CAS  Google Scholar 

  • Bankson MG and KA Cunningham (2001) 3,4-Methylenedio xymethamphetamine (MDMA) as a unique model of serotonin receptor function and serotonin-dopamine interactions.J. Pharmacol. Exp. Ther. 297, 846–852.

    PubMed  CAS  Google Scholar 

  • Barnhart BC, EC Alappat and ME Peter (2003) The CD95 type I/type H model.Semin. Immunol. 15, 185–193.

    PubMed  CAS  Google Scholar 

  • Bartu A, NC Freeman, GS Gawthorne, JP Codde and CD Holman (2004) Mortality in a cohort of opiate and amphetamine users in Perth, Western Australia.Addiction 99, 53–60.

    PubMed  Google Scholar 

  • Battaglia G, SY Yeh, E O’Hearn, ME Molliver, MJ Kuhar and EB De Souza (1987) 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of [3H]paroxetine-labeled serotonin uptake sites.J. Pharmacol. Exp. Ther. 242, 911–916.

    PubMed  CAS  Google Scholar 

  • Battaglia G, SY Yeh and EB De Souza (1988) MDMA-induced neurotoxicity: parameters of degeneration and recovery of brain serotonin neurons.Pharmacol. Biochem. Behav. 29, 269–274.

    PubMed  CAS  Google Scholar 

  • Battaglia G, F Fornai, CL Busceti, G Aloisi, F Cerrito, A De Blasi, D Melchiorri and F Nicoletti (2002) Selective blockade of mGlu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity.J. Neurosci. 22, 2135–2141.

    PubMed  CAS  Google Scholar 

  • Berger UV, XF Gu, JW van Lange and EC Azmitia (1992) Evidence for a common mechanism of serotonin release induced by substituted amphetaminesin vitro.Ann. NY Acad. Sci. 648, 358–360.

    PubMed  CAS  Google Scholar 

  • Betts ES, IN Krasnova, MT McCoy, B Ladenheim and JL Cadet (2002) Analysis of methamphetamine-induced changes in the expression of integrin family members in the cortex of wild-type and c-fos knockout mice.Neurotox. Res. 4, 617–623.

    PubMed  CAS  Google Scholar 

  • Bolla KI, UD McCann and GA Ricaurte (1998) Memory impairment in abstinent MDMA (‘Ecstasy’) users.Neurology 51, 1532–1537.

    PubMed  CAS  Google Scholar 

  • Bowyer JF, DL Davies, L Schmued, HW Broening, GD Newport, W Slikker Jr and RR Holson (1994) Further studies of the role of hyperthermia in methamphetamine neurotoxicity.J. Pharmacol. Exp. Ther. 268, 1571–1580.

    PubMed  CAS  Google Scholar 

  • Brown TN, J Schulenberg, JG Bachman, PM O’Malley and LD Johnston (2001) Are risk and protective factors for substance use consistent across historical time?: national data from the high school classes of 1976 through 1997.Prev. Sci. 2, 29–43.

    PubMed  CAS  Google Scholar 

  • Buchert R, J Obrocki, R Thomasius, O Vaterlein, K Petersen, L Jenicke, KH Bohuslavizki and M Clausen (2001) Long-term effects of ‘ecstasy’ abuse on the human brain studied by FDG PET.Nucl. Med. Commun. 22, 889–897.

    PubMed  CAS  Google Scholar 

  • Buffenstein A, J Heaster and P Ko (1999) Chronic psychotic illness from methamphetamine.Am. J. Psychiatry 156, 662.

    PubMed  CAS  Google Scholar 

  • Cadet JL and C Brannock (1998) Free radicals and the pathobiology of brain dopamine systems.Neurochem. Int. 32, 117–131.

    PubMed  CAS  Google Scholar 

  • Cadet JL, S Ali and C Epstein (1994a) Involvement of oxygen-based radicals in methamphetamine-induced neurotoxicity: evidence from the use of CuZnSOD transgenic mice.Ann. NY Acad. Sci. 738, 388–391.

    CAS  Google Scholar 

  • Cadet JL, B Ladenheim, I Baum, E Carlson and C Epstein (1994b) CuZn-superoxide dismutase (CuZnSOD) transgenic mice show resistance to the lethal effects of methylene-dioxyamphetamine (MDA) and of methylenedioxymetham-phetamine (MDMA).Brain Res. 655, 259–262.

    CAS  Google Scholar 

  • Cadet JL, B Ladenheim, H Hirata, RB Rothman, S Ali, E Carlson, C Epstein and TH Moran (1995) Superoxide radicals mediate the biochemical effects of methylene-dioxymethamphetamine (MDMA): evidence from using CuZn-superoxide dismutase transgenic mice.Synapse 21, 169–176.

    PubMed  CAS  Google Scholar 

  • Cadet JL,SV Ordonezand and JV Ordonez(1997)Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2.Synapse 25, 176–184.

    PubMed  CAS  Google Scholar 

  • Cadet JL, S Jayanthi, MT McCoy, M Vawter and B Ladenheim (2001) Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: evidence from cDNA array.Synapse 41, 40–48.

    PubMed  CAS  Google Scholar 

  • Cadet JL, MT McCoy and B Ladenheim (2002) Distinct gene expression signatures in the striata of wild-type and heterozygous c-fos knockout mice following methamphetamine administration: evidence from cDNA array analyses.Synapse 44, 211–226.

    PubMed  CAS  Google Scholar 

  • Cadet JL, S Jayanthi and X Deng (2003) Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis.FASEB J. 17, 1775–1788.

    PubMed  CAS  Google Scholar 

  • Cadet JL, S Jayanthi and X Deng (2005) Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review.Neurotox. Res. 8, 199–208.

    PubMed  CAS  Google Scholar 

  • Callahan BT, BJ Cord, J Yuan, UD McCann and GA Ricaurte (2001) Inhibitors of Na(+)/H(+) and Na(+)/Ca(2+) exchange potentiate methamphetamine-induced dopamine neurotoxicity: possible role of ionic dysregulation in methamphetamine neurotoxicity.J. Neurochem. 77, 1348–1362.

    PubMed  CAS  Google Scholar 

  • Callaway CW and RF Clark (1994) Hyperthermia in psycho- stimulant overdose.Ann. Emerg. Med. 24, 68–76.

    PubMed  CAS  Google Scholar 

  • Cho AK and WP Melega (2002) Patterns of methamphetamine abuse and their consequences.J. Addict. Dis. 21, 21–34.

    PubMed  Google Scholar 

  • Choi C and EN Benveniste (2004) Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses.Brain Res. Brain Res. Rev. 44, 65–81.

    PubMed  CAS  Google Scholar 

  • Chowdhury I, B Tharakan and GK Bhat (2006) Current concepts in apoptosis: the physiological suicide program revisited.Cell. Mol. Biol. Lett. 11, 506–525.

    PubMed  CAS  Google Scholar 

  • Chung KK, TM Dawson and VL Dawson (2005) Nitric oxide, S-nitrosylation and neurodegeneration.Cell Mol. Biol. (Noisy-le-grand) 51, 247–254.

    CAS  Google Scholar 

  • Chynn KY (1968) Technique for experimental embolization of cerebral arteries and repetitive selective internal carotid arteriography in dogs.Invest. Radiol. 3, 275–279.

    PubMed  CAS  Google Scholar 

  • Clausing P and JF Bowyer (1999) Time course of brain temperature and caudate/putamen microdialysate levels of amphetamine and dopamine in rats after multiple doses of d-amphetamine.Ann. NY Acad. Sci. 890, 495–504.

    PubMed  CAS  Google Scholar 

  • Clausing P, B Gough, RR Holson, W Slikker Jr and JF Bowyer (1995) Amphetamine levels in brain microdialysate, caudate/putamen, substantia nigra and plasma after dosage that produces either behavioral or neurotoxic effects.J. Pharmacol. Exp. Ther. 274, 614–621.

    PubMed  CAS  Google Scholar 

  • Colado MI and AR Green (1994) A study of the mechanism of MDMA (‘ecstasy’)-induced neurotoxicity of 5-HT neurones using chlormethiazole, dizocilpine and other protective compounds.Br. J. Pharmacol. 111, 131–136.

    PubMed  CAS  Google Scholar 

  • Colado MI and AR Green (1995) The spin trap reagent alpha- phenyl-N-tert-butyl nitrone prevents ‘ecstasy’-induced neurodegeneration of 5-hydroxytryptamine neurones.Eur. J. Pharmacol. 280, 343–346.

    PubMed  CAS  Google Scholar 

  • Colado MI, TK Murray and AR Green (1993) 5-HT loss in rat brain following 3,4-methylenedioxymethamphetamine (MDMA), p-chloroamphetamine and fenfluramine administration and effects of chlormethiazole and dizocilpine.Br. J. Pharmacol. 108, 583–589.

    PubMed  CAS  Google Scholar 

  • Commins DL, G Vosmer, RM Virus, WL Woolverton, CR Schuster and LS Seiden (1987) Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain.J. Pharmacol. Exp. Ther. 241, 338–345.

    PubMed  CAS  Google Scholar 

  • Craig AL and HJ Kupferberg (1972) Hyperthermia in damphetamine toxicity in aggregated mice of different strains.J. Pharmacol. Exp. Ther. 180, 616–624.

    PubMed  CAS  Google Scholar 

  • Cubells JF, S Rayport, G Rajendran and D Sulzer (1994) Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress.J. Neurosci. 14, 2260–2271.

    PubMed  CAS  Google Scholar 

  • Culmsee C and MP Mattson (2005) p53 in neuronal apoptosis.Biochem. Biophys. Res. Commun. 331, 761–777.

    PubMed  CAS  Google Scholar 

  • Dafters RI (1995) Hyperthermia following MDMA administration in rats: effects of ambient temperature, water consumption, and chronic dosing.Physiol. Behav. 58, 877–882.

    PubMed  CAS  Google Scholar 

  • Dafters RI and E Lynch (1998) Persistent loss of thermoregulation in the rat induced by 3,4-methylenedioxymethamphet-amine (MDMA or “Ecstasy”) but not by fenfluramine.Psychopharmacology (Berl.) 138, 207–212.

    CAS  Google Scholar 

  • Dalton TP, HG Shertzer and A Puga (1999) Regulation of gene expression by reactive oxygen.Annu. Rev. Pharmacol. Toxicol. 39, 67–101.

    PubMed  CAS  Google Scholar 

  • Dawson VL and TM Dawson (1998) Nitric oxide in neurode-generation.Prog. Brain Res. 118, 215–229.

    PubMed  CAS  Google Scholar 

  • De Letter EA, MH Piette, WE Lambert and JA Cordonnier (2006) Amphetamines as potential inducers of fatalities: a review in the district of Ghent from 1976-2004.Med. Sci. Law 46, 37–65.

    PubMed  Google Scholar 

  • De Souza EB, G Battaglia and TR Insel (1990) Neurotoxic effect of MDMA on brain serotonin neurons: evidence from neurochemical and radioligand binding studies.Ann. NY Acad. Sci. 600, 682–697; discussion 697-688.

    PubMed  Google Scholar 

  • De Vito MJ and GC Wagner (1989) Methamphetamine- induced neuronal damage: a possible role for free radicals.Neuropharmacology 28, 1145–1150.

    PubMed  Google Scholar 

  • Deng X and JL Cadet (2000) Methamphetamine-induced apoptosis is attenuated in the striata of copper-zinc superoxide dismutase transgenic mice.Brain Res. Mol. Brain Res. 83, 121–124.

    PubMed  CAS  Google Scholar 

  • Deng X, B Ladenheim, LI Tsao and JL Cadet (1999) Null mutation of c-fos causes exacerbation of methamphetamine-induced neurotoxicity.J. Neurosci. 19, 10107–10115.

    PubMed  CAS  Google Scholar 

  • Deng X, Y Wang, J Chou and JL Cadet (2001) Methamphetamine causes widespread apoptosis in the mouse brain: evidence from using an improved TUNEL histochemical method.Brain Res. Mol. Brain Res. 93, 64–69.

    PubMed  CAS  Google Scholar 

  • Deng X, NS Cai, MT McCoy, W Chen, MA Trush and JL Cadet (2002a) Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway.Neuropharmacology 42, 837–845.

    CAS  Google Scholar 

  • Deng X, S Jayanthi, B Ladenheim, IN Krasnova and JL Cadet (2002b) Mice with partial deficiency of c-Jun show attenuation of methamphetamine-induced neuronal apoptosis.Mol. Pharmacol. 62, 993–1000.

    CAS  Google Scholar 

  • Derlet RW, P Rice, BZ Horowitz and RV Lord (1989) Amphetamine toxicity: experience with 127 cases.J. Emerg. Med. 7, 157–161.

    PubMed  CAS  Google Scholar 

  • Dore G and M Sweeting (2006) Drug-induced psychosis associated with crystalline methamphetamine.Australas Psychiatry 14, 86–89.

    PubMed  Google Scholar 

  • Droin NM, MJ Pinkoski, E Dejardin and DR Green (2003) Egr family members regulate nonlymphoid expression of Fas ligand, TRAIL, and tumor necrosis factor during immune responses.Mol. Cell. Biol. 23, 7638–7647.

    PubMed  CAS  Google Scholar 

  • Eisch AJ and JF Marshall (1998) Methamphetamine neurotoxicity: dissociation of striatal dopamine terminal damage from parietal cortical cell body injury.Synapse 30, 433–445.

    PubMed  CAS  Google Scholar 

  • Ellison G, MS Eison, HS Huberman and F Daniel (1978) Long-term changes in dopaminergic innervation of caudate nucleus after continuous amphetamine administration.Science 201, 276–278.

    PubMed  CAS  Google Scholar 

  • Farfel GM and LS Seiden (1995) Role of hypothermia in the mechanism of protection against serotonergic toxicity. II. Experiments with methamphetamine, p-chloroamphet-amine, fenfluramine, dizocilpine and dextromethorphan.J. Pharmacol. Exp. Ther. 272, 868–875.

    PubMed  CAS  Google Scholar 

  • Farfel GM, GL Vosmer and LS Seiden (1992) The N-methyl- D-aspartate antagonist MK-801 protects against serotonin depletions induced by methamphetamine, 3,4-methylene- dioxymethamphetamine and p-chloroamphetamine.Brain Res. 595, 121–127.

    PubMed  CAS  Google Scholar 

  • Farrell M, J Marsden, R Ali and W Ling (2002) Methamphetamine: drug use and psychoses becomes a major public health issue in the Asia Pacific region.Addiction 97, 771–772.

    PubMed  Google Scholar 

  • Ferguson SM, CS Norton, SJ Watson, H Akil and TE Robinson (2003) Amphetamine-evoked c-fos mRNA expression in the caudate-putamen: the effects of DA and NMDA receptor antagonists vary as a function of neuronal phenotype and environmental context.J. Neurochem. 86, 33–44.

    PubMed  CAS  Google Scholar 

  • Ferri KF and G Kroemer (2001) Organelle-specific initiation of cell death pathways.Nat. Cell. Biol. 3, E255-E263.

    PubMed  CAS  Google Scholar 

  • Fischer C, G Hatzidimitriou, J Wlos, J Katz and G Ricaurte (1995) Reorganization of ascending 5-HT axon projec- tions in animals previously exposed to the recreational drug (+/-)3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”).J. Neurosci. 15, 5476–5485.

    PubMed  CAS  Google Scholar 

  • Fukami G, K Hashimoto, K Koike, N Okamura, E Shimizu and M Iyo (2004) Effect of antioxidant N-acetyl-L-cysteine on behavioral changes and neurotoxicity in rats after administration of methamphetamine.Brain Res. 1016, 90–95.

    PubMed  CAS  Google Scholar 

  • Fumagalli F, RR Gainetdinov, KJ Valenzano and MG Caron (1998) Role of dopamine transporter in methamphetamine- induced neurotoxicity: evidence from mice lacking the transporter.J. Neurosci. 18, 4861–4869.

    PubMed  CAS  Google Scholar 

  • Gerra G, A Zaimovic, M Ferri, U Zambelli, M Timpano, E Neri, GF Marzocchi, R Delsignore and F Brambilla (2000) Long- lasting effects of (+/-)3,4-methylenedioxymethamphetamine (ecstasy) on serotonin system function in humans.Biol. Psychiatry 47, 127–136.

    PubMed  CAS  Google Scholar 

  • Gilcrease MZ (2007) Integrin signaling in epithelial cells.Cancer Lett. 247, 1–25.

    PubMed  CAS  Google Scholar 

  • Ginsberg MD, M Hertzman and WW Schmidt-Nowara (1970) Amphetamine intoxication with coagulopathy, hyperther-mia, and reversible renal failure. A syndrome resembling heatstroke.Ann. Intern. Med. 73, 81–85.

    PubMed  CAS  Google Scholar 

  • Gluck MR, LY Moy, E Jayatilleke, KA Hogan, L Manzino and PK Sonsalla (2001) Parallel increases in lipid and protein oxidative markers in several mouse brain regions after meth- amphetamine treatment.J. Neurochem. 79, 152–160.

    PubMed  CAS  Google Scholar 

  • Gordon CJ, WP Watkinson, JP O’Callaghan and DB Miller (1991) Effects of 3,4-methylenedioxymethamphetamine on autonomic thermoregulatory responses of the rat.Pharmacol. Biochem. Behav. 38, 339–344.

    PubMed  CAS  Google Scholar 

  • Gudelsky GA and JF Nash (1996) Carrier-mediated release of serotonin by 3,4-methylenedioxymethamphetamine: implications for serotonin-dopamine interactions.J. Neurochem. 66, 243–249.

    PubMed  CAS  Google Scholar 

  • Gustavsen I, J Morland and JG Bramness (2006) Impairment related to blood amphetamine and/or methamphetamine concentrations in suspected drugged drivers.Accid. Anal. Prev. 38, 490–495.

    PubMed  Google Scholar 

  • Harold C, T Wallace, R Friedman, G Gudelsky and B Yamamoto (2000) Methamphetamine selectively alters brain glutathione.Eur. J. Pharmacol. 400, 99–102.

    PubMed  CAS  Google Scholar 

  • Hatzidimitriou G, UD McCann and GA Ricaurte (1999) Altered serotonin innervation patterns in the forebrain of monkeys treated with (+/-)3,4-methylenedioxymethamphet-amine seven years previously: factors influencing abnormal recovery.J. Neurosci. 19, 5096–5107.

    PubMed  CAS  Google Scholar 

  • Hirata H, B Ladenheim, E Carlson, C Epstein and JL Cadet (1996) Autoradiographic evidence for methamphetamine- induced striatal dopaminergic loss in mouse brain: attenuation in CuZn-superoxide dismutase transgenic mice.Brain Res. 714, 95–103.

    PubMed  CAS  Google Scholar 

  • Hsieh P (2001) Molecular mechanisms of DNA mismatch repair.Mutat. Res. 486, 71–87.

    PubMed  CAS  Google Scholar 

  • Huang NK, FJ Wan, CJ Tseng and CS Tung(1997) Amphetamine induces hydroxyl radical formation in the striatum of rats.Life Sci. 61, 2219–2229.

    PubMed  CAS  Google Scholar 

  • Hughes PE, T Alexi, CE Williams, RG Clark and PD Gluckman (1999) Administration of recombinant human Activin-A has powerful neurotrophic effects on select striatal phenotypes in the quinolinic acid lesion model of Huntington’s disease.Neuroscience 92, 197–209.

    PubMed  CAS  Google Scholar 

  • Imai Y and S Kohsaka (2002) Intracellular signaling in M-CSF-induced microglia activation: role of Iba1.Glia 40, 164–174.

    PubMed  Google Scholar 

  • Imam SZ and SF Ali (2000) Selenium, an antioxidant, attenuates methamphetamine-induced dopaminergic toxicity and peroxynitrite generation.Brain Res. 855, 186–191.

    PubMed  CAS  Google Scholar 

  • Imam SZ, GD Newport, Y Itzhak, JL Cadet, F Islam, W Slikker Jr and SF Ali (2001) Peroxynitrite plays a role in methamphetamine-induced dopaminergic neurotoxicity: evidence from mice lacking neuronal nitric oxide synthase gene or overexpressing copper-zinc superoxide dismutase.J. Neurochem. 76, 745–749.

    PubMed  CAS  Google Scholar 

  • Insel TR, G Battaglia, JN Johannessen, S Marra and EB De Souza (1989) 3,4-Methylenedioxymethamphetamine (“ecstasy”) selectively destroys brain serotonin terminals in rhesus monkeys.J. Pharmacol. Exp. Ther. 249, 713–720.

    PubMed  CAS  Google Scholar 

  • Itzhak Y and SF Ali (2006) Role of nitrergic system in behavioral and neurotoxic effects of amphetamine analogs.Pharmacol. Ther. 109, 246–262.

    PubMed  CAS  Google Scholar 

  • Itzhak Y, C Gandia, PL Huang and SF Ali (1998) Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity.J. Pharmacol. Exp. Ther. 284, 1040–1047.

    PubMed  CAS  Google Scholar 

  • Itzhak Y, JL Martin and SF Ali (2000) nNOS inhibitors attenuate methamphetamine-induced dopaminergic neurotoxicity but not hyperthermia in mice.Neuroreport 11, 2943–2946.

    PubMed  CAS  Google Scholar 

  • Iversen L (2006) Neurotransmitter transporters and their impact on the development of psychopharmacology.Br. J. Pharmacol. 147 Suppl. 1, S82-S88.

    Google Scholar 

  • Jakab RL and JF Bowyer (2002) Parvalbumin neuron circuits and microglia in three dopamine-poor cortical regions remain sensitive to amphetamine exposure in the absence of hyperthermia, seizure and stroke.Brain Res. 958, 52–69.

    PubMed  CAS  Google Scholar 

  • Janowsky DS and C Risch (1979) Amphetamine psychosis and psychotic symptoms.Psychopharmacology (Berl.) 65, 73–77.

    CAS  Google Scholar 

  • Jayanthi S, B Ladenheimand JL Cadet (1998) Methamphetamine- induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice.Ann. NYAcad. Sci. 844, 92–102.

    CAS  Google Scholar 

  • Jayanthi S, B Ladenheim, AM Andrews and JL Cadet (1999) Overexpression of human copper/zinc superoxide dismutase in transgenic mice attenuates oxidative stress caused by methylenedioxymethamphetamine (ecstasy).Neuroscience 91, 1379–1387.

    PubMed  CAS  Google Scholar 

  • Jayanthi S, X Deng, M Bordelon, MT McCoy and JL Cadet (2001) Methamphetamine causes differential regulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex.FASEBJ. 15, 1745–1752.

    CAS  Google Scholar 

  • Jayanthi S, X Deng, PA Noailles, B Ladenheim and JL Cadet (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochon- dria-dependent death cascades.FASEBJ. 18, 238–251.

    CAS  Google Scholar 

  • Jayanthi S, X Deng, B Ladenheim, MT McCoy, A Cluster, NS Cai and JL Cadet (2005) Calcineurin/NFAT-induced up- regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis.Proc. Natl. Acad. Sci. USA 102, 868–873.

    PubMed  CAS  Google Scholar 

  • Johnson M, GR Hanson and JW Gibb (1989) Effect of MK- 801 on the decrease in tryptophan hydroxylase induced by methamphetamine and its methylenedioxy analog.Eur. J. Pharmacol. 165, 315–318.

    PubMed  CAS  Google Scholar 

  • Jones AW (2005) Driving under the influence of drugs in Sweden with zero concentration limits in blood for controlled substances.Traffic Inj. Prev. 6, 317–322.

    PubMed  Google Scholar 

  • Jori A and M Rutczynski (1978) A genetic analysis of the hyperthermic response to d-amphetamine in two inbred strains of mice.Psychopharmacology (Berl.) 59, 199–203.

    CAS  Google Scholar 

  • Kalant H and OJ Kalant (1975) Death in amphetamine users: causes and rates.Can. Med. Assoc. J. 112, 299–304.

    PubMed  CAS  Google Scholar 

  • Kil HY, J Zhang and CA Piantadosi (1996) Brain temperature alters hydroxyl radical production during cerebral isch- emia/reperfusion in rats.J. Cereb. Blood Flow Metab. 16, 100–106.

    PubMed  CAS  Google Scholar 

  • Kish SJ, Y Furukawa, L Ang, SP Vorce and KS Kalasinsky (2000) Striatal serotonin is depleted in brain of a human MDMA (ecstasy) user.Neurology 55, 294–296.

    PubMed  CAS  Google Scholar 

  • Kondo T, T Ito and Y Sugita (1994) Bromocriptine scavenges methamphetamine-induced hydroxyl radicals and attenuates dopamine depletion in mouse striatum.Ann. NY Acad. Sci. 738, 222–229.

    PubMed  CAS  Google Scholar 

  • Kostowski W, A Plaznik, O Pucilowski and E Malatynska (1982) Effect of lesions of the brain noradrenergic systems on amphetamine-induced hyperthermia and locomotor stimulation.Acta Physiol. Pol. 33, 383–387.

    PubMed  CAS  Google Scholar 

  • Krasnova IN, B Ladenheim, S Jayanthi, J Oyler, TH Moran, MA Huestis and JL Cadet (2001) Amphetamine-induced toxicity in dopamine terminals in CD-1 and C57BL/6J mice: complex roles for oxygen-based species and temperature regulation.Neuroscience 107, 265–274.

    PubMed  CAS  Google Scholar 

  • Krasnova IN, MT McCoy, B Ladenheim and JL Cadet (2002) cDNA array analysis of gene expression profiles in the stri- ata of wild-type and Cu/Zn superoxide dismutase transgenic mice treated with neurotoxic doses of amphetamine.FASEB J. 16, 1379–1388.

    PubMed  CAS  Google Scholar 

  • Krasnova IN, B Ladenheim and JL Cadet (2005) Amphetamine induces apoptosis of medium spiny striatal projection neurons via the mitochondria-dependent pathway.FASEB J. 19, 851–853.

    PubMed  CAS  Google Scholar 

  • Krieglstein K, C Suter-Crazzolara, WH Fischer and K Unsicker (1995) TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity.EMBOJ. 14, 736–742.

    CAS  Google Scholar 

  • Ladeby R, M Wirenfeldt, D Garcia-Ovejero, C Fenger, L Dissing-Olesen, I Dalmau and B Finsen (2005) Microglial cell population dynamics in the injured adult central nervous system.Brain Res. Brain Res. Rev. 48, 196–206.

    PubMed  CAS  Google Scholar 

  • Lan KC, YF Lin, FC Yu, CS Lin and P Chu (1998) Clinical manifestations and prognostic features of acute methamphet-amine intoxication.J. Formos. Med. Assoc. 97, 528–533.

    PubMed  CAS  Google Scholar 

  • LaVoie MJ and TG Hastings (1999) Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine.J. Neurosci. 19, 1484–1491.

    PubMed  CAS  Google Scholar 

  • LaVoie MJ, JP Card and TG Hastings (2004) Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity.Exp. Neurol. 187, 47–57.

    PubMed  CAS  Google Scholar 

  • Levine AS, DC Jewett, JP Cleary, CM Kotz and CJ Billington (2004) Our journey with neuropeptide Y: effects on ingestive behaviors and energy expenditure.Peptides 25, 505–510.

    PubMed  CAS  Google Scholar 

  • Lew R, KE Sabol, C Chou, GL Vosmer, J Richards and LS Seiden (1996) Methylenedioxymethamphetamine-induced serotonin deficits are followed by partial recovery over a 52-week period. Part II: Radioligand binding and autoradi-ography studies.J. Pharmacol. Exp. Ther. 276, 855–865.

    PubMed  CAS  Google Scholar 

  • Li Y and MA Trush (1993) DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation.Carcinogenesis 14, 1303–1311.

    PubMed  CAS  Google Scholar 

  • Li-Weber M and PH Krammer (2002) The death of a T-cell: expression of the CD95 ligand.Cell Death Differ. 9, 101–103.

    PubMed  CAS  Google Scholar 

  • Li-Weber M, O Laur and PH Krammer (1999) Novel Egr/NF- AT composite sites mediate activation of the CD95 (APO-1/Fas) ligand promoter in response to T cell stimulation.Eur. J. Immunol. 29, 3017–3027.

    PubMed  CAS  Google Scholar 

  • Liechti ME, C Baumann, A Gamma and FX Vollenweider (2000) Acute psychological effects of 3,4-methyl- enedioxymethamphetamine (MDMA, “ecstasy”) are attenuated by the serotonin uptake inhibitor citalopram.Neuropsychopharmacology 22, 513–521.

    PubMed  CAS  Google Scholar 

  • Lin PS, S Quamo, KC Ho and J Gladding (1991) Hyperthermia enhances the cytotoxic effects of reactive oxygen species to Chinese hamster cells and bovine endothelial cellsin vitro.Radiat. Res. 126, 43–51.

    PubMed  CAS  Google Scholar 

  • Locksley RM, N Killeen and MJ Lenardo (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology.Cell 104, 487–501.

    PubMed  CAS  Google Scholar 

  • Lombard DB, KF Chua, R Mostoslavsky, S Franco, M Gostissa and FW Alt (2005) DNA repair, genome stability, and aging.Cell 120, 497–512.

    PubMed  CAS  Google Scholar 

  • London ED, SL Simon, SM Berman, MA Mandelkern, AM Lichtman, J Bramen, AK Shinn, K Miotto, J Learn, Y Dong, JA Matochik, V Kurian, T Newton, R Woods, R Rawson and W Ling (2004) Mood disturbances and regional cerebral metabolic abnormalities in recently abstinent methamphetamine abusers.Arch. Gen. Psychiatry 61, 73–84.

    PubMed  Google Scholar 

  • Lotharius J and KL O’Malley (2001) Role of mitochondrial dysfunction and dopamine-dependent oxidative stress in amphetamine-induced toxicity.Ann. Neurol. 49, 79–89.

    PubMed  CAS  Google Scholar 

  • Lyles J and JL Cadet (2003) Methylenedioxymeth-amphetamine (MDMA, Ecstasy) neurotoxicity: cellular and molecular mechanisms.Brain Res. Brain Res. Rev. 42, 155–168.

    PubMed  CAS  Google Scholar 

  • Macario AJ and E Conway de Macario (2005) Sick chaperones, cellular stress, and disease.N. Engl. J. Med. 353, 1489–1501.

    PubMed  CAS  Google Scholar 

  • Malberg JE, KE Sabol and LS Seiden (1996) Co-administration of MDMA with drugs that protect against MDMA neurotoxicity produces different effects on body temperature in the rat.J. Pharmacol. Exp. Ther. 278, 258–267.

    PubMed  CAS  Google Scholar 

  • Mark KA, JJ Soghomonian and BK Yamamoto (2004) High-dose methamphetamine acutely activates the striatonigral pathway to increase striatal glutamate and mediate long-term dopamine toxicity.J. Neurosci. 24, 11449–11456.

    PubMed  CAS  Google Scholar 

  • Marshall JF, SJ O’Dell and FB Weihmuller (1993) Dopamine-glutamate interactions in methamphetamine-induced neurotoxicity.J. Neural Transm. Gen. Sect. 91, 241–254.

    PubMed  CAS  Google Scholar 

  • Martin SS and K Vuori (2004) Regulation of Bcl-2 proteins during anoikis and amorphosis.Biochim. Biophys. Acta 1692, 145–157.

    PubMed  CAS  Google Scholar 

  • Matthews RT, TH Champney and GD Frye (1989) Effects of (+-)3,4-methylenedioxymethamphetamine (MDMA) on brain dopaminergic activity in rats.Pharmacol. Biochem. Behav. 33, 741–747.

    PubMed  CAS  Google Scholar 

  • McCabe SE, CJ Teter and CJ Boyd (2004) The use, misuse and diversion of prescription stimulants among middle and high school students.Subst. Use Misuse 39, 1095–1116.

    PubMed  Google Scholar 

  • McCabe SE, JR Knight, CJ Teter and H Wechsler (2005) Non- medical use of prescription stimulants among US college students: prevalence and correlates from a national survey.Addiction 100, 96–106.

    PubMed  Google Scholar 

  • McCann UD, A Ridenour, Y Shaham and GA Ricaurte (1994) Serotonin neurotoxicity after (+/-)3,4-methylenedioxymeth- amphetamine (MDMA; “ecstasy”): a controlled study in humans.Neuropsychopharmacology 10, 129–138.

    PubMed  CAS  Google Scholar 

  • McCann UD, Z Szabo, U Scheffel, RF Dannals and GA Ricaurte (1998a) Positron emission tomographic evidence of toxic effect of MDMA (“ecstasy”) on brain serotonin neurons in human beings.Lancet 352, 1433–1437.

    CAS  Google Scholar 

  • McCann UD, DF Wong, F Yokoi, V Villemagne, RF Dannals and GA Ricaurte (1998b) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathi-none users: evidence from positron emission tomography studies with [11C]WIN-35,428.J. Neurosci. 18, 8417–8422.

    CAS  Google Scholar 

  • McCann UD, M Mertl, V Eligulashvili and GA Ricaurte (1999) Cognitive performance in (+/-) 3,4-methylenedioxymeth-amphetamine (MDMA, “ecstasy”) users: a controlled study.Psychopharmacology (Berl.) 143, 417–425.

    CAS  Google Scholar 

  • McCann UD, V Eligulashvili and GA Ricaurte (2000) (+/-)3,4- Methylenedioxymethamphetamine (“ecstasy”)-induced serotonin neurotoxicity: clinical studies.Neuropsychobiology 42, 11–16.

    PubMed  CAS  Google Scholar 

  • McCullough KD, JL Martindale, LO Klotz, TY Aw and NJ Holbrook (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state.Mol. Cell. Biol. 21, 1249–1259.

    PubMed  CAS  Google Scholar 

  • McKenna DJ and SJ Peroutka (1990) Neurochemistry and neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”).J. Neurochem. 54, 14–22.

    PubMed  CAS  Google Scholar 

  • McKetin R and RP Mattick (1997) Attention and memory in illicit amphetamine users.Drug Alcohol Depend. 48, 235–242.

    PubMed  CAS  Google Scholar 

  • Mechan AO, B Esteban, E O’Shea, JM Elliott, MI Colado and AR Green (2002) The pharmacology of the acute hyperthermic response that follows administration of 3,4-methylene-dioxymethamphetamine (MDMA, ‘ecstasy’) to rats.Br. J. Pharmacol. 135, 170–180.

    PubMed  CAS  Google Scholar 

  • Milanovic D, V Pesic, L Rakic, S Kanazir and S Ruzdijic (2006) Enhancement of AP-1 DNA-binding activity during amphetamine- and phencyclidine-mediated behaviour in rats.Neuropharmacology 50, 924–933.

    PubMed  CAS  Google Scholar 

  • Miller DB and JP O’Callaghan (1994) Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse.J. Pharmacol. Exp. Ther. 270, 752–760.

    PubMed  CAS  Google Scholar 

  • Miller DB and JP O’Callaghan (1996) Neurotoxicity of damphetamine in the C57BL/6J and CD-1 mouse. Interactions with stress and the adrenal system.Ann. NYAcad. Sci. 801, 148–167.

    CAS  Google Scholar 

  • Mills EM, ML Banks, JE Sprague and T Finkel (2003) Pharmacology: uncoupling the agony from ecstasy.Nature 426, 403–404.

    PubMed  CAS  Google Scholar 

  • Miyazaki I, M Asanuma, FJ Diaz-Corrales, M Fukuda, K Kitaichi, K Miyoshi and N Ogawa (2006) Methamphet-amine-induced dopaminergic neurotoxicity is regulated by quinone-formation-related molecules.FASEB J. 20, 571–573.

    PubMed  CAS  Google Scholar 

  • Moll UM, S Wolff, D Speidel and W Deppert (2005) Transcription-independent pro-apoptotic functions of p53.Curr. Opin. Cell. Biol. 17, 631–636.

    PubMed  CAS  Google Scholar 

  • Molliver ME, UV Berger, LA Mamounas, DC Molliver, E O’Hearn and MA Wilson (1990) Neurotoxicity of MDMA and related compounds: anatomic studies.Ann. NY Acad. Sci. 600, 649–661; discussion 661-644.

    PubMed  CAS  Google Scholar 

  • Murachi T, K Tanaka, M Hatanaka and T Murakami (1980) Intracellular Ca2+-dependent protease (calpain) and its high- molecular-weight endogenous inhibitor (calpastatin).Adv. Enzyme Regul. 19, 407–424.

    PubMed  CAS  Google Scholar 

  • Murray JB (1998) Psychophysiological aspects of amphet-amine-methamphetamine abuse.J. Psychol. 132, 227–237.

    PubMed  CAS  Google Scholar 

  • Nagata S (1999) Fas ligand-induced apoptosis.Annu. Rev. Genet. 33, 29–55.

    PubMed  CAS  Google Scholar 

  • Nakagawa T and J Yuan (2000) Cross-talk between two cyste- ine protease families. Activation of caspase-12 by calpain in apoptosis.J. Cell. Biol. 150, 887–894.

    PubMed  CAS  Google Scholar 

  • Nash JFJr, HY Meltzer and GA Gudelsky (1988) Elevation of serum prolactin and corticosterone concentrations in the rat after the administration of 3,4-methylenedioxymethamphet- amine.J. Pharmacol. Exp. Ther. 245, 873–879.

    PubMed  CAS  Google Scholar 

  • Nilsen H and HE Krokan (2001) Base excision repair in a network of defense and tolerance.Carcinogenesis 22, 987–998.

    PubMed  CAS  Google Scholar 

  • O’Dell SJ and JF Marshall (2000) Repeated administration of methamphetamine damages cells in the somatosensory cortex: overlap with cytochrome oxidase-rich barrels.Synapse 37, 32–37.

    PubMed  CAS  Google Scholar 

  • O’Hearn E, G Battaglia, EB De Souza, MJ Kuhar and ME Molliver (1988) Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity.J. Neurosci. 8, 2788–2803.

    PubMed  CAS  Google Scholar 

  • O’Shea E, I Escobedo, L Orio, V Sanchez, M Navarro, AR Green and MI Colado (2005) Elevation of ambient room temperature has differential effects on MDMA-induced 5-HT and dopamine release in striatum and nucleus accum- bens of rats.Neuropsychopharmacology 30, 1312–1323.

    PubMed  CAS  Google Scholar 

  • Oliveira MT, AC Rego, MT Morgadinho, TR Macedo and CR Oliveira (2002) Toxic effects of opioid and stimulant drugs on undifferentiated PC12 cells.Ann. NY Acad. Sci. 965, 487–496.

    PubMed  CAS  Google Scholar 

  • Ornstein TJ, JL Iddon, AM Baldacchino, BJ Sahakian, M London, BJ Everitt and TW Robbins (2000) Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers.Neuropsychopharmacology 23, 113–126.

    PubMed  CAS  Google Scholar 

  • Papp E, G Nardai, C Soti and P Csermely (2003) Molecular chaperones, stress proteins and redox homeostasis.Biofactors 17, 249–257.

    PubMed  CAS  Google Scholar 

  • Paris JM and KA Cunningham (1992) Lack of serotonin neurotoxicity after intraraphe microinjection of (+)-3,4-methy-lenedioxymethamphetamine (MDMA).Brain Res. Bull. 28, 115–119.

    PubMed  CAS  Google Scholar 

  • Paschen W (2001) Dependence of vital cell function on endoplasmic reticulum calcium levels: implications for the mechanisms underlying neuronal cell injury in different pathological states.Cell Calcium 29, 1–11.

    PubMed  CAS  Google Scholar 

  • Persico AM, CW Schindler, R Zaczek, MT Brannock and GR Uhl (1995) Brain transcription factor gene expression, neurotransmitter levels, and novelty response behaviors: alterations during rat amphetamine withdrawal and following chronic injection stress.Synapse 19, 212–227.

    PubMed  CAS  Google Scholar 

  • Petit C and A Sancar (1999) Nucleotide excision repair: from E. coli to man.Biochimie 81, 15–25.

    PubMed  CAS  Google Scholar 

  • Poli G, G Leonarduzzi, F Biasi and E Chiarpotto (2004) Oxidative stress and cell signalling.Curr. Med. Chem. 11, 1163–1182.

    PubMed  CAS  Google Scholar 

  • Price LH, GA Ricaurte, JH Krystal and GR Heninger (1989) Neuroendocrine and mood responses to intravenous L-tryp-tophan in 3,4-methylenedioxymethamphetamine (MDMA) users. Preliminary observations.Arch. Gen. Psychiatry 46, 20–22.

    PubMed  CAS  Google Scholar 

  • Puder KS, DV Kagan and JP Morgan (1988) Illicit metham-phetamine: analysis, synthesis, and availability.Am. J. Drug Alcohol Abuse 14, 463–473.

    PubMed  CAS  Google Scholar 

  • Qiu J, MJ Whalen, P Lowenstein, G Fiskum, B Fahy, R Darwish, B Aarabi, J Yuan and MA Moskowitz (2002) Upregulation of the Fas receptor death-inducing signaling complex after traumatic brain injury in mice and humans.J. Neurosci. 22, 3504–3511.

    PubMed  CAS  Google Scholar 

  • Raes E and AG Verstraete (2005) Usefulness of roadside urine drug screening in drivers suspected of driving under the influence of drugs (DUID).J Anal. Toxicol. 29, 632–636.

    PubMed  CAS  Google Scholar 

  • Raivich G (2005) Like cops on the beat: the active role of resting microglia.Trends Neurosci. 28, 571–573.

    PubMed  CAS  Google Scholar 

  • Ravagnan L, T Roumier and G Kroemer (2002) Mitochondria, the killer organelles and their weapons.J. Cell. Physiol. 192, 131–137.

    PubMed  CAS  Google Scholar 

  • Reneman L, J Lavalaye, B Schmand, FA de Wolff, W van den Brink, GJ den Heeten and J Booij (2001) Cortical serotonin transporter density and verbal memory in individuals who stopped using 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”): preliminary findings.Arch. Gen. Psychiatry 58, 901–906.

    PubMed  CAS  Google Scholar 

  • Ricaurte GA, CR Schuster and LS Seiden (1980) Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: a regional study.Brain Res. 193, 153–163.

    PubMed  CAS  Google Scholar 

  • Ricaurte GA, LE De Lanney, SG Wiener, I Irwin and JW Langston (1988a) 5-Hydroxyindoleacetic acid in cerebro-spinal fluid reflects serotonergic damage induced by 3,4-methylenedioxymethamphetamine in CNS of non-human primates.Brain Res. 474, 359–363.

    CAS  Google Scholar 

  • Ricaurte GA, LS Forno, MA Wilson, LE De Lanney, I Irwin, ME Molliver and JW Langston (1988b) (+/-)3,4-Methylene dioxymethamphetamine selectively damages central serotonergic neurons in nonhuman primates.JAMA 260, 51–55.

    CAS  Google Scholar 

  • Ricaurte GA, KT Finnegan, I Irwin and JW Langston (1990) Aminergic metabolites in cerebrospinal fluid of humans previously exposed to MDMA: preliminary observations.Ann. NY. Acad. Sci. 600, 699–708; discussion 708-710.

    PubMed  CAS  Google Scholar 

  • Ricaurte GA, UD McCann, Z Szabo and U Scheffel (2000) Toxicodynamics and long-term toxicity of the recreational drug, 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’).Toxicol. Lett. 112–113, 143–146.

    PubMed  Google Scholar 

  • Richard D (1995) Exercise and the neurobiological control of food intake and energy expenditure.Int. J. Obes. Relat. Metab. Disord. 19 Suppl. 4, S73–79.

    Google Scholar 

  • Rock RB, G Gekker, S Hu, WS Sheng, M Cheeran, JR Lokensgard and PK Peterson (2004) Role of microglia in central nervous system infections.Clin. Microbiol. Rev. 17, 942–964.

    PubMed  CAS  Google Scholar 

  • Rogers RD, BJ Everitt, A Baldacchino, AJ Blackshaw, R Swainson, K Wynne, NB Baker, J Hunter, T Carthy, E Booker, M London, JF Deakin, BJ Sahakian and TW Robbins (1999) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and trypto-phan-depleted normal volunteers: evidence for monoaminergic mechanisms.Neuropsychopharmacology 20, 322–339.

    PubMed  CAS  Google Scholar 

  • Sabol KE, R Lew, JB Richards, GL Vosmer and LS Seiden (1996) Methylenedioxymethamphetamine-induced serotonin deficits are followed by partial recovery over a 52- week period. Part I: Synaptosomal uptake and tissue concentrations.J. Pharmacol. Exp. Ther. 276, 846–854.

    PubMed  CAS  Google Scholar 

  • Salanova V and R Taubner (1984) Intracerebral haemorrhage and vasculitis secondary to amphetamine use.Postgrad. Med. J. 60, 429–430.

    PubMed  CAS  Google Scholar 

  • Sanchez C (1989) The effects of dopamine D-1 and D-2 receptor agonists on body temperature in male mice.Eur. J. Pharmacol. 171, 201–206.

    PubMed  CAS  Google Scholar 

  • Sanchez V, M Zeini, J Camarero, E O’Shea, L Bosca, AR Green and MI Colado (2003) The nNOS inhibitor, AR-R17477AR, prevents the loss of NF68 immunoreactivity induced by methamphetamine in the mouse striatum.J. Neurochem. 85, 515–524.

    PubMed  CAS  Google Scholar 

  • Sapp E, KB Kegel, N Aronin, T Hashikawa, Y Uchiyama, K Tohyama, PG Bhide, JP Vonsattel and M DiFiglia (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain.J. Neuropathol. Exp. Neurol. 60, 161–172.

    PubMed  CAS  Google Scholar 

  • Scanzello CR, G Hatzidimitriou, AL Martello, JL Katz and GA Ricaurte (1993) Serotonergic recovery after (+/-)3,4-(methylenedioxy) methamphetamine injury: observations in rats.J. Pharmacol. Exp. Ther. 264, 1484–1491.

    PubMed  CAS  Google Scholar 

  • Scheffel U, C Steinert, SE Kim, MD Ehlers, JW Boja and MJ Kuhar (1996) Effect of dopaminergic drugs on thein vivo binding of [3H]WIN 35,428 to central dopamine transporters.Synapse 23, 61–69.

    PubMed  CAS  Google Scholar 

  • Scheffel U, Z Szabo, WB Mathews, PA Finley, RF Dannals, HT Ravert, K Szabo, J Yuan and GA Ricaurte (1998)In vivo detection of short- and long-term MDMA neurotoxicity - a positron emission tomography study in the living baboon brain.Synapse 29, 183–192.

    PubMed  CAS  Google Scholar 

  • Schmidt CJ (1987) Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine.J. Pharmacol. Exp. Ther. 240, 1–7.

    PubMed  CAS  Google Scholar 

  • Schmidt CJ (1989) Acute and long-term neurochemical effects of methylenedioxymethamphetamine in the rat.NIDA Res. Monogr. 94, 179–195.

    PubMed  CAS  Google Scholar 

  • Schmidt CJ and JH Kehne (1990) Neurotoxicity of MDMA: neurochemical effects. Ann.NY Acad. Sci. 600, 665–680; discussion 680-681.

    CAS  Google Scholar 

  • Schmidt CJ, L Wu and W Lovenberg (1986) Methylenediox ymethamphetamine: a potentially neurotoxic amphetamine analogue.Eur. J. Pharmacol. 124, 175–178.

    Google Scholar 

  • Schmidt CJ, JA Levin and W Lovenberg (1987)In vitro andin vivo neurochemical effects of methylenedioxymethamphetamine on striatal monoaminergic systems in the rat brain.Biochem. Pharmacol.36, 747–755.

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, CK Black and VL Taylor (1990) Antagonism of the neurotoxicity due to a single administration of methy-lenedioxymethamphetamine.Eur. J. Pharmacol. 181, 59–70.

    PubMed  CAS  Google Scholar 

  • Schwartz K, A Weizman and M Rehavi (2006) The effect of psychostimulants on [3H]dopamine uptake and release in rat brain synaptic vesicles.J. Neural Transm. 113, 1347–1352.

    PubMed  CAS  Google Scholar 

  • Seale TW, JM Carney, P Johnson and OM Rennert (1985) Inheritance of amphetamine-induced thermoregulatory responses in inbred mice.Pharmacol. Biochem. Behav. 23, 373–377.

    PubMed  CAS  Google Scholar 

  • Seiden LS, KE Sabol and GA Ricaurte (1993) Amphetamine: effects on catecholamine systems and behavior.Annu. Rev. Pharmacol. Toxicol. 33, 639–677.

    PubMed  CAS  Google Scholar 

  • Sekine Y, M Iyo, Y Ouchi, T Matsunaga, H Tsukada, H Okada, E Yoshikawa, M Futatsubashi, N Takei and N Mori (2001) Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET.Am. J. Psychiatry 158, 1206–1214.

    PubMed  CAS  Google Scholar 

  • Sekine Y, Y Minabe, Y Ouchi, N Takei, M Iyo, K Nakamura, K Suzuki, H Tsukada, H Okada, E Yoshikawa, M Futatsubashi and N Mori (2003) Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms.Am. J. Psychiatry 160, 1699–1701.

    PubMed  Google Scholar 

  • Sekine Y, Y Ouchi, N Takei, E Yoshikawa, K Nakamura, M Futatsubashi, H Okada, Y Minabe, K Suzuki, Y Iwata, KJ Tsuchiya, H Tsukada, M Iyo and N Mori (2006) Brain serotonin transporter density and aggression in abstinent meth-amphetamine abusers.Arch. Gen. Psychiatry 63, 90–100.

    PubMed  CAS  Google Scholar 

  • Semple DM, KP Ebmeier, MF Glabus, RE O’Carroll and EC Johnstone (1999) Reducedin vivo binding to the serotonin transporter in the cerebral cortex of MDMA (‘ecstasy’) users.Br. J. Psychiatry 175, 63–69.

    PubMed  CAS  Google Scholar 

  • Shankaran M and GA Gudelsky (1998) Effect of 3,4-meth-ylenedioxymethamphetamine (MDMA) on hippocampal dopamine and serotonin.Pharmacol. Biochem. Behav. 61, 361–366.

    PubMed  CAS  Google Scholar 

  • Sheng P, C Cerruti, S Ali and JL Cadet (1996) Nitric oxide is a mediator of methamphetamine (METH)-induced neurotoxicity.In vitro evidence from primary cultures of mesencephalic cells.Ann. NYAcad. Sci. 801, 174–186.

    CAS  Google Scholar 

  • Silva OA and M Yonamine (2004) Drug abuse among workers in Brazilian regions.Rev. Saude Publica 38, 552–556.

    PubMed  Google Scholar 

  • Simantov R and M Tauber (1997) The abused drug MDMA (ecstasy) induces programmed death of human serotonergic cells.FASEB J. 11, 141–146.

    PubMed  CAS  Google Scholar 

  • Simon SL, C Domier, J Carnell, P Brethen, R Rawson and W Ling (2000) Cognitive impairment in individuals currently using methamphetamine.Am. J. Addict. 9, 222–231.

    PubMed  CAS  Google Scholar 

  • Slikker W Jr, SF Ali, AC Scallet, CH Frith, GD Newport and JR Bailey (1988) Neurochemical and neurohistological alterations in the rat and monkey produced by orally administered methylenedioxymethamphetamine (MDMA).Toxicol. Appl. Pharmacol. 94, 448–457.

    PubMed  CAS  Google Scholar 

  • Smith LM, LL LaGasse, C Derauf, P Grant, R Shah, A Arria, M Huestis, W Haning, A Strauss, SD Grotta, J Liu and BM Lester (2006) The infant development, environment, and lifestyle study: effects of prenatal methamphetamine exposure, polydrug exposure, and poverty on intrauterine growth.Pediatrics 118, 1149–1156.

    PubMed  Google Scholar 

  • Sonsalla PK, WJ Nicklas and RE Heikkila (1989) Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity.Science 243, 398–400.

    PubMed  CAS  Google Scholar 

  • Sprague JE and DE Nichols (1995) Inhibition of MAO-B protects against MDMA-induced neurotoxicity in the striatum.Psychopharmacology (Berl.) 118, 357–359.

    CAS  Google Scholar 

  • Sprague JE, ML Banks, VJ Cook and EM Mills (2003) Hypothalamic-pituitary-thyroid axis and sympathetic nervous system involvement in hyperthermia induced by 3,4-methylenedioxymethamphetamine (ecstasy).J. Pharmacol. Exp. Ther. 305, 159–166.

    Google Scholar 

  • Sprague JE, P Moze, D Caden, DE Rusyniak, C Holmes, DS Goldstein and EM Mills (2005) Carvedilol reverses hyperthermia and attenuates rhabdomyolysis induced by 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) in an animal model.Crit. Care Med. 33, 1311–1316.

    PubMed  CAS  Google Scholar 

  • Sriram K, DB Miller and JP O’Callaghan (2006) Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor- alpha.J. Neurochem. 96, 706–718.

    PubMed  CAS  Google Scholar 

  • Steentoft A, B Teige, P Holmgren, E Vuori, J Kristinsson, AC Hansen, G Ceder, G Wethe and D Rollmann (2006) Fatal poisoning in Nordic drug addicts in 2002.Forensic Sci. Int. 160, 148–156.

    PubMed  CAS  Google Scholar 

  • Stewart VC, AJ Heslegrave, GC Brown, JB Clark and SJ Heales (2002) Nitric oxide-dependent damage to neuronal mitochondria involves the NMD A receptor.Eur. J. Neurosci. 15, 458–464.

    PubMed  CAS  Google Scholar 

  • Stokes AH, TG Hastings and KE Vrana (1999) Cytotoxic and genotoxic potential of dopamine.J. Neurosci. Res. 55, 659–665.

    PubMed  CAS  Google Scholar 

  • Stone DM, DC Stahl, GR Hanson and JW Gibb (1986) The effects of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on mono-aminergic systems in the rat brain.Eur. J. Pharmacol. 128, 41–48.

    PubMed  CAS  Google Scholar 

  • Stone DM, KM Merchant, GR Hanson and JW Gibb (1987) Immediate and long-term effects of 3,4-methylenedioxy-methamphetamine on serotonin pathways in brain of rat.Neuropharmacology 26, 1677–1683.

    PubMed  CAS  Google Scholar 

  • Stumm G, J Schlegel, T Schafer, C Wurz, HD Mennel, JC Krieg and H Vedder (1999) Amphetamines induce apoptosis and regulation of bcl-x splice variants in neocortical neurons.FASEB J. 13, 1065–1072.

    PubMed  CAS  Google Scholar 

  • Sulzer D, TK Chen, YY Lau, H Kristensen, S Rayport and A Ewing (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport.J. Neurosci. 15, 4102–4108.

    PubMed  CAS  Google Scholar 

  • Taraska T and KT Finnegan (1997) Nitric oxide and the neurotoxic effects of methamphetamine and 3,4-methylenedioxy-methamphetamine.J. Pharmacol. Exp. Ther. 280, 941–947.

    PubMed  CAS  Google Scholar 

  • Thiriet N, B Ladenheim, MT McCoy and JL Cadet (2002) Analysis of ecstasy (MDMA)-induced transcriptional responses in the rat cortex.FASEB J. 16, 1887–1894.

    PubMed  CAS  Google Scholar 

  • Thiriet N, X Deng, M Solinas, B Ladenheim, W Curtis, SR Goldberg, RD Palmiter and JL Cadet (2005) Neuropeptide Y protects against methamphetamine-induced neuronal apoptosis in the mouse striatum.J. Neurosci. 25, 5273–5279.

    PubMed  CAS  Google Scholar 

  • Thomas DM and DM Kuhn (2005) MK-801 and dextro-methorphan block microglial activation and protect against methamphetamine-induced neurotoxicity.Brain Res. 1050, 190–198.

    PubMed  CAS  Google Scholar 

  • Thomas DM, J Dowgiert, TJ Geddes, D Francescutti-Verbeem, X Liu and DM Kuhn (2004) Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines.Neurosci. Lett. 367, 349–354.

    PubMed  CAS  Google Scholar 

  • Verma A and SK Kulkarni (1993) Differential role of dopamine receptor subtypes in thermoregulation and stereotypic behavior in naive and reserpinized rats.Arch. Int. Pharmacodyn. Ther. 324, 17–32.

    PubMed  CAS  Google Scholar 

  • Volkow ND, L Chang, GJ Wang, JS Fowler, D Franceschi, MJ Sedler, SJ Gatley, R Hitzemann, YS Ding, C Wong and J Logan (2001a) Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers.Am. J. Psychiatry 158, 383–389.

    CAS  Google Scholar 

  • Volkow ND, L Chang, GJ Wang, JS Fowler, M Leonido-Yee, D Franceschi, MJ Sedler, SJ Gatley, R Hitzemann, YS Ding, J Logan, C Wong and EN Miller (2001b) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers.Am. J. Psychiatry 158, 377–382.

    CAS  Google Scholar 

  • Wagner GC, GA Ricaurte, CE Johanson, CR Schuster and LS Seiden (1980a) Amphetamine induces depletion of dopamine and loss of dopamine uptake sites in caudate.Neurology 30, 547–550.

    CAS  Google Scholar 

  • Wagner GC, GA Ricaurte, LS Seiden, CR Schuster, RJ Miller and J Westley (1980b) Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine.Brain Res. 181, 151–160.

    CAS  Google Scholar 

  • Wagner GC, RM Carelli and MF Jarvis (1985) Pretreatment with ascorbic acid attenuates the neurotoxic effects of methamphetamine in rats.Res. Commun. Chem. Pathol. Pharmacol. 47, 221–228.

    PubMed  CAS  Google Scholar 

  • Wan FJ, HC Lin, YS Lin and CJ Tseng (2000) Intra-striatal infusion of D-amphetamine induces hydroxyl radical formation: inhibition by MK-801 pretreatment.Neuropharmacology 39, 419–426.

    PubMed  CAS  Google Scholar 

  • Werner S and C Alzheimer (2006) Roles of activin in tissue repair, fibrosis, and inflammatory disease.Cytokine Growth Factor Rev. 17, 157–171.

    PubMed  CAS  Google Scholar 

  • White SR, T Obradovic, KM Imel and MJ Wheaton (1996) The effects of methylenedioxymethamphetamine (MDMA, “ecstasy”) on monoaminergic neurotransmission in the central nervous system.Prog. Neurobiol. 49, 455–479.

    PubMed  CAS  Google Scholar 

  • Wieloch T and K Nikolich (2006) Mechanisms of neural plasticity following brain injury.Curr. Opin. Neurobiol. 16, 258–264.

    PubMed  CAS  Google Scholar 

  • Wilson JM, KS Kalasinsky, AI Levey, C Bergeron, G Reiber, RM Anthony, GA Schmunk, K Shannak, JW Haycock and SJ Kish (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users.Nat. Med. 2, 699–703.

    PubMed  CAS  Google Scholar 

  • Wylie FM, H Torrance, A Seymour, S Buttress and JS Oliver (2005) Drugs in oral fluid. Part II. Investigation of drugs in drivers.Forensic Sci. Int. 150, 199–204.

    PubMed  CAS  Google Scholar 

  • Xiang Z, V Haroutunian, L Ho, D Purohit and GM Pasinetti (2006) Microglia activation in the brain as inflammatory biomarker of Alzheimer’s disease neuropathology and clinical dementia.Dis. Markers 22, 95–102.

    PubMed  CAS  Google Scholar 

  • Yeh SY and FL Hsu (1991) The neurochemical and stimulatory effects of putative metabolites of 3,4-methylene-dioxyamphetamine and 3,4-methylenedioxymethamphet-amine in rats.Pharmacol. Biochem. Behav. 39, 787–790.

    PubMed  CAS  Google Scholar 

  • Yui K, K Goto, S Ikemoto, T Ishiguro, B Angrist, GE Duncan, BB Sheitman, JA Lieberman, SH Bracha and SF Ali (1999) Neurobiological basis of relapse prediction in stimulant-induced psychosis and schizophrenia: the role of sensitization.Mol. Psychiatry 4, 512–523.

    PubMed  CAS  Google Scholar 

  • Zafar KS, D Siegel and D Ross (2006) A potential role for cyclized quinones derived from dopamine, DOPA, and 3,4-dihydroxyphenylacetic acid in proteasomal inhibition.Mol. Pharmacol. 70, 1079–1086.

    PubMed  CAS  Google Scholar 

  • Zarrindast MR and SA Tabatabai (1992) Involvement of dopamine receptor subtypes in mouse thermoregulation.Psychopharmacology (Berl.) 107, 341–346.

    CAS  Google Scholar 

  • Zinszner H, M Kuroda, X Wang, N Batchvarova, RT Lightfoot, H Remotti, JL Stevens and D Ron (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum.Genes Dev. 12, 982–995.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Lud Cadet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadet, J.L., Krasnova, I.N., Jayanthi, S. et al. Neurotoxicity of substituted amphetamines: Molecular and cellular mechanisms. neurotox res 11, 183–202 (2007). https://doi.org/10.1007/BF03033567

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033567

Keywords

Navigation