Skip to main content
Log in

Clozapine, atypical antipsychotics, and the benefits of fast-off D2 dopamine receptor antagonism

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Drug–receptor interactions are traditionally quantified in terms of affinity and efficacy, but there is increasing awareness that the drug-on-receptor residence time also affects clinical performance. While most interest has hitherto been focused on slow-dissociating drugs, D2 dopamine receptor antagonists show less extrapyramidal side effects but still have excellent antipsychotic activity when they dissociate swiftly. Fast dissociation of clozapine, the prototype of the “atypical antipsychotics”, has been evidenced by distinct radioligand binding approaches both on cell membranes and intact cells. The surmountable nature of clozapine in functional assays with fast-emerging responses like calcium transients is confirmatory. Potential advantages and pitfalls of the hitherto used techniques are discussed, and recommendations are given to obtain more precise dissociation rates for such drugs. Surmountable antagonism is necessary to allow sufficient D2 receptor stimulation by endogenous dopamine in the striatum. Simulations are presented to find out whether this can be achieved during sub-second bursts in dopamine concentration or rather during much slower, activity-related increases thereof. While the antagonist’s dissociation rate is important to distinguish between both mechanisms, this becomes much less so when contemplating time intervals between successive drug intakes, i.e., when pharmacokinetic considerations prevail. Attention is also drawn to the divergent residence times of hydrophobic antagonists like haloperidol when comparing radioligand binding data on cell membranes with those on intact cells and clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abi-Dargham A, Laruelle M (2005) Mechanisms of action of second generation antipsychotic drugs in schizophrenia: insights from brain imaging studies. Eur Psychiat 20:15–27

    Article  Google Scholar 

  • Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Van Heertum RL, Gorman JM, Laruelle M (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci U S A 97:8104–8109

    Article  PubMed  CAS  Google Scholar 

  • Agid O, Mamo D, Ginovart N, Vitcu I, Wilson AA, Zipursky RB, Kapur S (2007) Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response: a double-blind PET study in schizophrenia. Neuropsychopharmacol 32:1209–1215

    Article  CAS  Google Scholar 

  • Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K (2010) Understanding wiring and volume transmission. Brain Res Rev 64:137–159

    Article  PubMed  Google Scholar 

  • Agneter E, Drobny H, Singer EA (1991) Estimation of agonist dissociation constants at central presynaptic alpha2 autoreceptors in the absence of autoinhibition. J Pharmacol Exp Ther 257:19–25

    PubMed  CAS  Google Scholar 

  • Aizman O, Brismar H, Uhlen P, Zettergren E, Levey AI, Forssberg H, Greengard P, Aperia A (2000) Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat Neurosci 3:226–230

    Article  PubMed  CAS  Google Scholar 

  • Akam E, Strange PG (2004) Inverse agonist properties of atypical antipsychotic drugs. Biochem Pharmacol 67:2039–2045

    Article  PubMed  CAS  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  PubMed  CAS  Google Scholar 

  • Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8:128–140

    Article  PubMed  CAS  Google Scholar 

  • Alphs LD, Lee HS (1991) Comparison of withdrawal of typical and atypical antipsychotic drugs: a case study. J Clin Psychiat 52:346–348

    CAS  Google Scholar 

  • Amalric M, Koob GF (1993) Functionally selective neurochemical afferents and efferents of the mesocorticolimbidopamine system. Prog Brain Res 99:209–226

    Article  PubMed  CAS  Google Scholar 

  • Anderson GP (1993) Formoterol: pharmacology, molecular basis of agonism, and mechanism of long duration of a highly potent and selective beta2-adrenoceptor agonist bronchodilator. Life Sci 52:2145–2160

    Article  PubMed  CAS  Google Scholar 

  • Anderson GP, Lindén A, Rabe KF (1994) Why are long-acting beta-adrenoceptor agonists long-acting? Eur Respir J 7:569–578

    Article  PubMed  CAS  Google Scholar 

  • Angrist B, Van Kammen DP (1984) CNS stimulants as a tool in the study of schizophrenia. Trends Neurosci 7:388–390

    Article  Google Scholar 

  • Armstrong D, Strange PG (2001) Dopamine D2 receptor dimer formation: evidence from ligand binding. J Biol Chem 276:22621–22629

    Article  PubMed  CAS  Google Scholar 

  • Arnt J, Skarsfelt T (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of evidence. Neuropsychopharmacol 18:63–101

    Article  CAS  Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Brit J Pharmacol 14:48–58

    PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Frankenburg FR (1991) Clozapine. A novel antipsychotic agent. N Engl J Med 324:74–54

    Google Scholar 

  • Baron JC, Martinot JL, Cambon H, Boulenger JP, Poirier MF, Caillard V, Blin J, Huret JD, Loch C, Maziere B (1989) Striatal dopamine receptor occupancy during and following withdrawal from neuroleptic treatment: correlative evaluation by positron emission tomography and plasma prolactin levels. Psychopharmacology 99:463–472

    Article  PubMed  CAS  Google Scholar 

  • Barton AC, Black LE, Sibley DR (1991) Agonist-induced desensitization of D2 dopamine receptors in human Y-79 retinoblastoma cells. Mol Pharmacol 39:650–658

    PubMed  CAS  Google Scholar 

  • Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273

    Article  PubMed  CAS  Google Scholar 

  • Bédard P, Larochelle L, Parent A, Poirier LJ (1969) Dopamine and serotonin in the striatum of the cat. Effect of lesions of the intralaminar nuclei. Arch Neurol 20:239–242

    Article  PubMed  Google Scholar 

  • Ben-Jonathan N, Hnasko R (2001) Dopamine as a prolactin (PRL) inhibitor. Endocrine Rev 22:724–763

    Article  CAS  Google Scholar 

  • Björklund A, Falck B, Hromek F, Owman C, West KA (1970) Identification and terminal distribution of the tubero-hypophyseal monoamine fibre systems in the rat by means of stereotaxic and microspectrofluorimetric techniques. Brain Res 17:1–23

    Article  PubMed  Google Scholar 

  • Black JW, Leff P (1983) Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 220:141–162

    Article  PubMed  CAS  Google Scholar 

  • Brink CB, Wade SM, Neubig RR (2000) Agonist-directed trafficking of porcine alpha2A-adrenergic receptor signaling in Chinese hamster ovary cells: l-isoproterenol selectively activates Gs. J Pharmacol Exp Ther 294:539–547

    PubMed  CAS  Google Scholar 

  • Burris KD, Molski TF, Xu C, Ryan E, Tottori K, Kikuchi T, Yocca FD, Molinoff PB (2002) Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 302:381–389

    Article  PubMed  CAS  Google Scholar 

  • Burstein ES, Ma J, Wong S, Gao Y, Pham E, Knapp AE, Nash NR, Olsson R, Davis RE, Hacksell U, Weiner DM, Brann MR (2005) Intrinsic efficacy of antipsychotics at human D2, D3, and D4 dopamine receptors: identification of the clozapine metabolite N-desmethylclozapine as a D2/D3 partial agonist. J Pharmacol Exp Ther 315:1278–1287

    Article  PubMed  CAS  Google Scholar 

  • Burt DR, Creese I, Snyder SH (1977) Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196:326–328

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Carlsson ML (2006) A dopaminergic deficit hypothesis of schizophrenia: the path to discovery. Dialog Clin Neurosci 8:137–142

    Google Scholar 

  • Caron MG, Beaulieu M, Raymond V, Gagne B, Drouin J, Lefkowitz RJ, Labrie F (1978) Dopaminergic receptors in the anterior pituitary gland: correlation of [3H]dihydroergocryptine binding with the dopaminergic control of prolactin release. J Biol Chem 253:2244–2253

    PubMed  CAS  Google Scholar 

  • Centonze D, Usiello A, Gubellini P, Pisani A, Borrelli E, Bernardi G, Calabresi P (2002) Dopamine D2 receptor- mediated inhibition of dopaminergic neurons in mice lacking D2L receptors. Neuropsychopharmacol 27:723–726

    Article  CAS  Google Scholar 

  • Charalambous C, Gsandtner I, Keuerleber S, Milan-Lobo L, Kudlacek O, Freissmuth M, Zezula J (2008) Restricted collision coupling of the A2A receptor revisited: evidence for physical separation of two signaling cascades. J Biol Chem 283:9276–9288

    Article  PubMed  CAS  Google Scholar 

  • Charlton S, Vauquelin G (2010) Elusive equilibrium: the challenge of interpreting receptor pharmacology using calcium assays. Brit J Pharmacol 161:1250–1265

    Article  CAS  Google Scholar 

  • Chio CL, Lajiness ME, Huff RM (1994) Activation of heterologeously expressed D3 dopamine receptors: comparison with D2 dopamine receptors. Mol Pharmacol 45:51–60

    PubMed  CAS  Google Scholar 

  • Christopoulos A, Parsons AM, Lew MJ, El-Fakahany EE (1999) The assessment of antagonist potency under conditions of transient response kinetics. Eur J Pharmacol 382:217–227

    Article  PubMed  CAS  Google Scholar 

  • Coldwell MC, Boyfield I, Brown AM, Stemp G, Middlemiss DN (1999) Pharmacological characterization of extracellular acidification rate responses in human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells. Brit J Pharmacol 127:1135–1144

    Article  CAS  Google Scholar 

  • Copeland RA (2010) The dynamics of drug-target interactions: drug-target residence time and its impact on efficacy and safety. Expert Opin Drug Discov 5:305–310

    Article  CAS  Google Scholar 

  • Copeland RA, Pompliano DL, Meek TD (2006) Drug-target residence time and its implications for lead optimization. Nat Rev Drug Disc 5:730–739

    Article  CAS  Google Scholar 

  • Cragg SJ, Rice ME (2004) DAncing past the DAT at a DA synapse. Trends Neurosci 27:270–277

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Article  PubMed  CAS  Google Scholar 

  • Csernansky JG, Murphy GM, Faustman WO (1991) Limbic/mesolimbic connections and the pathogenesis of schizophrenia. Biol Psychiat 30:383–400

    Article  PubMed  CAS  Google Scholar 

  • Curran C, Byrappa N, McBride A (2004) Stimulant psychosis: systematic review. Brit J Psychiat 185:196–204

    Article  PubMed  Google Scholar 

  • Dal Toso R, Sommer B, Ewert M, Herb A, Pritchett DB, Bach A, Shivers BD, Seeburg PH (1989) The dopamine D2 receptor: two molecular forms generated by alternative splicing. EMBO J 8:4025–4034

    PubMed  CAS  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiat 148:1474–1486

    PubMed  CAS  Google Scholar 

  • De Lean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 255:7108–7117

    PubMed  Google Scholar 

  • Demaegdt H, Smitz L, De Backer J-P, Le MT, Bauwens M, Michotte Y, Vanderheyden P, Vauquelin G (2008) Translocation of the insulin regulated aminopeptidase to the cell surface: detection by radioligand binding. Brit J Pharmacol 154:872–881

    Article  CAS  Google Scholar 

  • Demaegdt H, Gard P, De Backer J-P, Lukaszuk A, Szemenyei E, Tóth G, Tourwé D, Vauquelin G (2011) Binding of “AT4 receptor” ligands to the insulin regulated aminopeptidase (IRAP) in intact Chinese hamster ovary cells. Mol Cell Endocrinol 339:34–44

    Article  PubMed  CAS  Google Scholar 

  • Dowling MR, Charlton SJ (2006) Quantifying the association and dissociation rates of unlabelled antagonists at the muscarinic M3 receptor. Brit J Pharmacol 148:1134–1142

    Google Scholar 

  • Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD (2010) Influence of phasic and tonic dopamine release on receptor activation. J Neurosci 30:14273–14283

    Article  PubMed  CAS  Google Scholar 

  • Dyhring T, Nielsen EØ, Sonesson C, Pettersson F, Karlsson J, Svensson P, Christophersen P, Waters N (2010) The dopaminergic stabilizers pridopidine (ACR16) and (-)-OSU6162 display dopamine D2 receptor antagonism and fast receptor dissociation properties. Eur J Pharmacol 628:19–26

    Article  PubMed  CAS  Google Scholar 

  • Einhorn LC, Oxford GS (1993) Guanine nucleotide binding proteins mediate D2 dopamine receptor activation of a potassium channel in rat lactotrophs. J Physiol 462:563–578

    PubMed  CAS  Google Scholar 

  • Einhorn LC, Gregerson KA, Oxford GS (1991) D2 dopamine receptor activation of potassium channels in identified rat lactotrophs: whole-cell and single-channel recording. J Neurosci 11:3727–3737

    PubMed  CAS  Google Scholar 

  • Eklind-Cervenka M, Benson L, Dahlström U, Edner M, Rosenqvist M, Lund LH (2011) Association of candesartan vs losartan with all-cause mortality in patients with heart failure. J Amer Med Assoc 305:175–182

    Article  CAS  Google Scholar 

  • Farah AJ (2005) Atypicality of atypical antipsychotics. Clin Psychiatry 2005(7):268–274

    Google Scholar 

  • Farde L (1996) The advantage of using positron emission tomography in drug research. Trends Neurol Sci 19:211–214

    Article  CAS  Google Scholar 

  • Farde L, Nordström AL (1993) PET examination of central D2 dopamine receptor occupancy in relation to extrapyramidal syndromes in patients being treated with neuroleptic drugs. Psychoph S 10:94–100

    CAS  Google Scholar 

  • Farde L, Wiesel FA, Stone-Elander S, Halldin C, Nordström AL, Hall H, Sedvall G (1990) D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11 C]raclopride. Arch Gen Psychiat 47:213–219

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Nordström AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side effects. Arch Gen Psychiat 49:538–544

    Article  PubMed  CAS  Google Scholar 

  • Faron-Górecka A, Górecki A, Kuśmider M, Wasylewski Z, Dziedzicka-Wasylewska M (2008) The role of D1-D2 receptor hetero-dimerization in the mechanism of action of clozapine. Eur Neuropsychopharm 18:682–691

    Article  CAS  Google Scholar 

  • Fierens FLP, Vanderheyden PML, De Backer J-P, Vauquelin G (1999) Insurmountable angiotensin II AT1 receptor antagonists: the role of tight antagonist binding. Eur J Pharmacol 372:199–206

    Article  PubMed  CAS  Google Scholar 

  • Fierens F, Vanderheyden PML, Roggeman C, Vande Gucht P, De Backer J-P, Vauquelin G (2002) Distinct binding properties of the AT1 receptor antagonist [3H]candesartan to intact cells and membrane preparations. Biochem Pharmacol 63:1273–1279

    Article  PubMed  CAS  Google Scholar 

  • Fluxe K, Hökfelt T, Johansson O, Jonsson G, Lidbrink P, Ljungdahl A (1974) The origin of the dopamine nerve terminals in limbic and frontal cortex. Evidence for meso-cortico dopamine neurons. Brain Res 82:349–355

    Article  PubMed  CAS  Google Scholar 

  • Frankle WG, Gil R, Hackett E, Mawlawi O, Zea-Ponce Y, Zhu Z, Kochan LD, Cangiano C, Slifstein M, Gorman JM, Laruelle M, Abi-Dargham A (2004) Occupancy of dopamine D2 receptors by the atypical antipsychotic drugs risperidone and olanzapine: theoretical implications. Psychopharmacology 175:473–480

    PubMed  CAS  Google Scholar 

  • Furchgott RF (1966) The use of β-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. Adv Drug Res 3:21–55

    Google Scholar 

  • Furchgott RF, Bursztyn P (1967) Comparison of dissociation constants and of relative efficacy of selected agonists acting on parasympathetic receptors. Ann N Y Acad Sci 144:882–898

    Article  CAS  Google Scholar 

  • Gaddum JH, Hameed KA, Hathaway DE, Stephens FF (1955) Quantitative studies of antagonists for 5-hydroxytryptamine. Q J Exp Physiol 40:49–74

    CAS  Google Scholar 

  • Ganz MB, Pachter JA, Barber DL (1990) Multiple receptors coupled to adenylate cyclase regulate Na-H exchange independent of cAMP. J Biol Chem 265:8989–8992

    PubMed  CAS  Google Scholar 

  • Gardner B, Hall DA, Strange PG (1996) Pharmacological analysis of dopamine stimulation of [35S]-GTPγS binding via human D2short and D2long dopamine receptors expressed in recombinant cells. Brit J Pharmacol 118:1544–1550

    CAS  Google Scholar 

  • Garris PA, Ciolkowski EL, Pastore P, Wightman RM (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14:6084–6093

    PubMed  CAS  Google Scholar 

  • Gazi L, Nickolls SA, Strange PG (2003a) Functional coupling of the human dopamine D2 receptor with Gαi1, Gαi2, Gαi3 and Gαo G proteins: evidence for agonist regulation of G protein selectivity Brit. J Pharmacol 138:775–786

    CAS  Google Scholar 

  • Gazi L, Wurch T, Lopéz-Giménez JF, Pauwels PJ, Strange PG (2003b) Pharmacological analysis of a dopamine D2Short: Gαo fusion protein expressed in Sf9 cells. FEBS Lett 545:155–160

    Article  PubMed  CAS  Google Scholar 

  • Gefvert O, Bergstrom M, Langstrom B, Lundberg T, Lindstrom L, Yates R (1998) Time course of central nervous dopamine-D2 and 5-HT2 receptor blockade and plasma drug concentrations after discontinuation of quetiapine (Seroquel) in patients with schizophrenia. Psychopharmacology 135:119–126

    Article  PubMed  CAS  Google Scholar 

  • Gejman PV, Ram A, Gelernter J, Friedman E, Cao Q, Pickar D, Blum K, Noble EP, Kranzler HR, O’malley S, Hamer DH, Whitsitt F, Rao P, Delisi LE, Virkkunen M, Linnoila M, Goldman D, Gershon ES (1994) No structural mutation in the dopamine-D2 receptor gene in alcoholism or schizophrenia—analysis using denaturing gradient gel-electrophoresis. J Amer Med Assoc 271:204–208

    Article  CAS  Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320

    Article  PubMed  CAS  Google Scholar 

  • Ghahremani MH, Cheng P, Lembo PM, Albert PR (1999) Distinct roles for Gαi2, Gαi3, and Gβγ in modulation of forskolin- or Gs-mediated cAMP accumulation and calcium mobilization by dopamine D2S receptors. J Biol Chem 274:9238–9245

    Article  PubMed  CAS  Google Scholar 

  • Ghahremani MH, Forget C, Albert PR (2000) Distinct roles for Gαi2 and Gβγ in signaling to DNA synthesis and Gαi3 in cllular transformation by dopamine D2S receptor activation in BALB/c 3T3 cells. Mol Cell Biol 20:1497–1506

    Article  PubMed  CAS  Google Scholar 

  • Gilliland SL, Alper RH (2000) Characterization of dopaminergic compounds at hD2short, hD4.2 and hD4.7 receptors in agonist-stimulated [35S]GTPγS binding assays. N-S Arch Pharmacol 361:498–504

    Article  CAS  Google Scholar 

  • Ginovart N, Farde L, Halldin C, Swahn C-G (1997) Effect of reserpine-induced depletion of synaptic dopamine on [11C]raclopride binding to D2-dopamine receptors in the monkey brain. Synapse 25:321–325

    Article  PubMed  CAS  Google Scholar 

  • Ginovart N, Galineau L, Willeit M, Mizrahi R, Bloomfield PM, Seeman P, Houle S, Kapur S, Wilson AA (2006) Binding characteristics and sensitivity to endogenous dopamine of [11C]-(+)-PHNO, a new agonist radiotracer for imaging the high-affinity state of D2 receptors in vivo using positron emission tomography. J Neurochem 97:1089–1103

    Article  PubMed  CAS  Google Scholar 

  • Graeser D, Neubig RR (1993) Compartmentation of receptors and guanine nucleotide-binding proteins in NG108-15 cells: lack of cross-talk in agonist binding among the alpha2-adrenergic, muscarinic and opiate receptors. Mol Pharmacol 43:434–443

    PubMed  CAS  Google Scholar 

  • Grießner M, Bröker P, Lehmann A, Ehrentreich-Förster E, Bier FF (2009) Detection of angiotensin II type 1 receptor ligands by a cell-based assay. Anal Bioanal Chem 395:1937–1940

    Article  PubMed  CAS  Google Scholar 

  • Grunder G, Landvogt C, Vernaleken I, Buchholz HG, Ondracek J, Siessmeier T, Härtter S, Schreckenberger M, Stoeter P, Hiemke C, Rösch F, Wong DF, Bartenstein P (2006) The striatal and extrastriatal D2/D3 receptor-binding profile of clozapine in patients with schizophrenia. Neuropsychopharmacol 31:1027–1035

    Article  CAS  Google Scholar 

  • Guillin O, Abi-Dargham A, Laruelle M (2007) Neurobiology of dopamine in schizophrenia. Int Rev Neurobiol 78:1–39

    Article  PubMed  CAS  Google Scholar 

  • Guo N, Guo W, Kralikova M, Jiang M, Schieren I, Narendran R, Slifstein M, Abi-Dargham A, Laruelle M, Javitch JA, Rayport S (2010) Impact of D2 receptor internalization on binding affinity of neuroimaging radiotracers. Neuropsychopharmacol 35:806–817

    Article  CAS  Google Scholar 

  • Hagberg G, Gervert O, Bergström M, Wieselgren IM, Lindström L, Wiesel FA, Langström B (1998) N-[11C]methylspiperone PET, in contrast to [11C]raclopride, fails to detect D2 receptor occupancy by an atypical neuroleptic. Psychiatry Res 82:147–160

    Article  PubMed  CAS  Google Scholar 

  • Hagger C, Buckley P, Kenny JT, Friedman L, Ubogy D, Meltzer HY (1993) Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biol Psychiat 34:702–712

    Article  PubMed  CAS  Google Scholar 

  • Hall DA, Strange PG (1997) Evidence that antipsychotic drugs are inverse agonists at D2 dopamine receptors. Brit J Pharmacol 121:731–736

    Article  CAS  Google Scholar 

  • Hamblin MW, Creese I (1983) Behavioral and radioligand binding evidence for irreversible dopamine receptor blockade by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. Life Sci 32:2247–2255

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Tozawa F, Itazaki K, Mihara S, Fujimoto M (1998) Endothelin ETB receptors show different binding profiles in intact cells and cell membrane preparations. Eur J Pharmacol 345:339–342

    Article  PubMed  CAS  Google Scholar 

  • Hartvig P, Eckernäs SA, Lindström L, Ekblom B, Bondesson U, Lundqvist H, Halldin C, Någren K, Långström B (1986) Receptor binding of N-(methyl-11C) clozapine in the brain of rhesus monkey studied by positron emission tomography (PET). Psychopharmacology 89:248–252

    Article  PubMed  CAS  Google Scholar 

  • Hauber W (1998) Involvement of basal ganglia transmitter systems in movement initiation. Prog Neurobiol 56:507–540

    Article  PubMed  CAS  Google Scholar 

  • Heise CE, Sullivan S, Crowe PD (2007) Scintillation proximity assay as high-throughput method to identify slowly dissociating nonpeptide ligand binding to the GnRH receptor. J Biomol Screen 12:235–239

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Lopez S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier DJ (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLCβ1-IP3-calcineurin-signaling cascade. J Neurosci 20:8987–8995

    PubMed  CAS  Google Scholar 

  • Hersch SM, Ciliax BJ, Gutekunst CA, Flees HD, Heilman CJ, Yung KKL, Paul Bolam J, Ince E, Yi H, Levey AI (1995) Electron microscopic analysis of Dl and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 75:5222–5237

    Google Scholar 

  • Hippius H (1989) The history of clozapine. Psychopharmacology 99:S3–S5

    Article  PubMed  Google Scholar 

  • Hippius H (1999) A historical perspective of clozapine. J Clin Psychiat 60:S22–S23

    Article  Google Scholar 

  • Hrabctová S, Nicholson C (2004) Contribution of dead-space microdomains to tortuosity of brain extracellular space. Neurochem Int 45:467–477

    Article  CAS  Google Scholar 

  • Huff RM (1996) Signal transduction pathways modulated by the D2 subfamily of dopamine receptors. Cell Signal 8:453–459

    Article  PubMed  CAS  Google Scholar 

  • Ichise M, Meyer JH, Yonekura Y (2001) An introduction to PET and SPECT neuroreceptor quantification models. J Nuclear Med 42:755–763

    CAS  Google Scholar 

  • Idanpaan-Heikkila J, Alhava E, Olkinuora M, Palva IP (1977) Agranulocytosis during treatment with clozapine. Eur J Clin Pharmacol 11:193–198

    Article  PubMed  CAS  Google Scholar 

  • Itokawa M, Toru M, Ito K, Tsuga H, Kameyama K, Haga T, Arinami T, Hamaguchi H (1996) Sequestration of the short and long isoforms of dopamine D2 receptors expressed in Chinese hamster ovary cells. Mol Pharmacol 49:560–566

    PubMed  CAS  Google Scholar 

  • Jardemark K, Wadenberg ML, Grillner P, Svensson TH (2002) Dopamine D3 and D4 receptor antagonists in the treatment of schizophrenia. Curr Opin Invest Dr 3:101–105

    CAS  Google Scholar 

  • Jiang M, Spicher K, Boulay G, Wang Y, Birnbaumer L (2001) Most central nervous system D2 dopamine receptors are coupled to their effectors by Go. Proc Natl Acad Sci USA 98:3577–3582

    Article  PubMed  CAS  Google Scholar 

  • Jomphe C, Tiberi M, Trudeau L-E (2006) Expression of D2 receptor isoforms in cultured neurons reveals equipotent autoreceptor function. Neuropharmacology 50:595–605

    Article  PubMed  CAS  Google Scholar 

  • Jones C, Kapur S, Remington G, Zipursky RB (2000) Transient dopamine D2 occupancy in low EPS-incidence drugs: PET evidence (abstract). Biol Psychiat 47(8 suppl):112

    Article  Google Scholar 

  • Jordan S, Johnson JL, Regardie K, Chen R, Koprivica V, Tadori Y, Kambayashi J, Kitagawa H, Kikuchi T (2007a) Dopamine D2 receptor partial agonists display differential or contrasting characteristics in membrane and cell-based assays of dopamine D2 receptor signaling. Prog Neuro-Psychoph 31:348–356

    Article  CAS  Google Scholar 

  • Jordan S, Regardie K, Johnson JL, Chen R, Kambayashi J, McQuade R, Kitagawa H, Tadori Y, Kikuchi T (2007b) In vitro functional characteristics of dopamine D2 receptor partial agonists in second and third messenger-based assays of cloned human dopamine D2Long receptor signalling. J Psychopharmacol 21:620–627

    Article  PubMed  CAS  Google Scholar 

  • Kabbani N, Levenson R (2006) Antipsychotic-induced alterations in D2 dopamine receptor interacting proteins within the cortex. Mol Neurosci 17:299–301

    CAS  Google Scholar 

  • Kabbani N, Hannan M, Levenson R (2005) Unravelling the dopamine receptor signalplex by DRIPs and DRAPS. Curr Proteom 2:209–224

    Article  CAS  Google Scholar 

  • Kalani MY, Vaidehi N, Hall SE, Trabanino RJ, Freddolino PL, Kalani MA, Floriano WB, Kam VW, Goddard WA 3rd (2004) The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proc Natl Acad Sci USA 101:3815–3820

    Article  PubMed  CAS  Google Scholar 

  • Kane J, Honigfeld G, Singer J, Meltzer H (1988a) Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiat 45:789–796

    Article  PubMed  CAS  Google Scholar 

  • Kane JM, Honigfeld G, Singer J, Meltzer H (1988b) Clozapine in treatment-resistant schizophrenics. Psychopharmacol Bull 24:62–67

    PubMed  CAS  Google Scholar 

  • Kanterman RY, Mahan LC, Briley EM, Monsma FJ Jr, Sibley DR, Axelrod J, Felder CC (1991) Transfected D2 dopamine receptors mediate the potentiation of arachidonic acid release in Chinese hamster ovary cells. Mol Pharmacol 39:364–369

    PubMed  CAS  Google Scholar 

  • Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatr 27:1081–1090

    Google Scholar 

  • Kapur S, Seeman P (2000) Antipsychotic agents differ in how fast they come off the dopamine D2 receptors. Implications for atypical antipsychotic action. J Psychiatr Neurosci 25:161–166

    CAS  Google Scholar 

  • Kapur S, Seeman P (2001) Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics?: a new hypothesis. Am J Psychiat 158:360–369

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Zipursky RB, Remington G (1999) Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiat 156:286–293

    PubMed  CAS  Google Scholar 

  • Kapur S, Zipursky R, Jones C, Shammi CS, Remington G, Seeman P (2000) A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch Gen Psychiat 57:553–559

    Article  PubMed  CAS  Google Scholar 

  • Karbe H, Wienhard K, Haniacher K, Huber M, Lerholz K, Coenen HH, Stocklin G, Lovenich A, Heiss WD (1991) Positron emission tomography with [18F]methylspipcronc demonstrates D2 dopamine receptor binding differences of clozapine and haloperidol. J Neural Transm 86:163–173

    Article  CAS  Google Scholar 

  • Kawagoe KT, Garris PA, Wiedemann DJ, Wightman RM (1992) Regulation of transient dopamine concentration gradients in the microenvironment surrounding nerve terminals in the rat striatum. Neuroscience 51:55–64

    Article  PubMed  CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Article  PubMed  CAS  Google Scholar 

  • Kegeles LS, Slifstein M, Frankle WG, Xu X, Hackett E, Bae SA, Gonzales R, Kim JH, Alvarez B, Gil R, Laruelle M, Abi-Dargham A (2008) Dose-occupancy study of striatal and extrastriatal dopamine D2 receptors by aripiprazole in schizophrenia with PET and [18 F]fallypride. Neuropsychopharmacol 33:3111–3125

    Article  CAS  Google Scholar 

  • Kenakin TP (1993) Stimulus–response mechanisms. In: Kenakin TP (ed) Pharmacologic analysis of drug–receptor interactions. Raven, New York, pp 39–68

    Google Scholar 

  • Kenakin T (1996) The classification of seven transmembrane receptors in recombinant expression systems. Pharmacol Rev 48:413–463

    PubMed  CAS  Google Scholar 

  • Kenakin T (2003) Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol Sci 24:346–354

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T, Jenkinson S, Watson C (2006) Determining the potency and molecular mechanism of action of insurmountable antagonists. J Pharmacol Exp Ther 319:710–723

    Article  PubMed  CAS  Google Scholar 

  • Kessler RM, Whetsell WO, Ansari MS, Votaw JR, de Paulis T, Clanton JA, Schmidt DE, Mason NS, Manning RG (1993) Identification of extrastriatal dopamine D2 receptors in post mortem human brain with [123I]epidepride. Brain Res 609:237–243

    Article  PubMed  CAS  Google Scholar 

  • Kessler RM, Ansari MS, Riccardi P, Li R, Jayathilake K, Dawant B et al (2006) Occupancy of striatal and extrastriatal dopamine D2 receptors by clozapine and quetiapine. Neuropsychopharmacol 3:1991–2001

    Article  CAS  Google Scholar 

  • Kim KM, Valenzano KJ, Robinson SR, Yao WD, Barak LS, Caron MG (2001) Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled kinases and beta-arrestins. J Biol Chem 276:37409–37414

    Article  PubMed  CAS  Google Scholar 

  • Kinon BJ, Lieberman JA (1996) Mechanisms of action of atypical antipsychotic drugs: a critical analysis. Psychopharmacology 124:2–34

    Article  PubMed  CAS  Google Scholar 

  • Kjeldsen SE, Stålhammar J, Hasvold P, Bodegard J, Olsson U, Russell D (2010) Effects of losartan vs candesartan in reducing cardiovascular events in the primary treatment of hypertension. J Hum Hypertens 24:263–273

    Article  PubMed  CAS  Google Scholar 

  • Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, Brooks DJ, Bench CJ, Grasby PM (1998) Evidence for striatal dopamine release during a video game. Nature 393:266–268

    Article  PubMed  CAS  Google Scholar 

  • Korner M, Gilon C, Schramm M (1982) Locking of hormone in the beta-adrenergic receptor by attack on a sulfhydryl in an associated component. J Biol Chem 257(7):3389–3396

    PubMed  CAS  Google Scholar 

  • Kortekaas R, Maguire RP, Cremers TI, Dijkstra D, van Waarde A, Leenders KL (2004) In vivo binding behavior of dopamine receptor agonist (+)-PD 128907 and implications for the “ceiling effect” in endogenous competition studies with [11C]raclopride—a positron emission tomography study in Macaca mulatta. J Cerebr Blood F Met 24:531–535

    Article  CAS  Google Scholar 

  • Kramer MS, Last B, Getson A, Reines SA (1997) The effects of a selective D4 dopamine receptor antagonist (L-745,870) in acutely psychotic inpatients with schizophrenia. Arch Gen Psychiat 4:567–572

    Article  Google Scholar 

  • Langlois X, Megens A, Lavreysen H, Wouters R, Peeters L, te Riele P, Hendrickx H, Mahieu M, de Bruyn M, Macdonald G (2010) Pharmacology of JNJ-37822681, a specific and fast-dissociating D2 antagonist for the treatment of schizophrenia. Poster, presented at the 23nd Congress of European College of Neuropsychopharmacology; Amsterdam, 9/2010. Eur Neuropsychopharmacol 20:S502

    Article  Google Scholar 

  • Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cerebr Blood F Met 20:423–451

    Article  CAS  Google Scholar 

  • Laruelle M (2003) Dopamine transmission in the schizophrenic brain. In: Weinberger DR, Hirsch S (eds) Schizophrenia, 2nd edn. Blackwell Publishing, Oxford, pp 365–387

    Chapter  Google Scholar 

  • Laruelle M, D’Souza CD, Baldwin RM, Abi-Dargham A, Kanes SJ, Fingado CL, Seibyl JP, Zoghbi SS, Bowers MB, Jatlow P, Charney DS, Innis RB (1997a) Imaging D2 receptor occupancy by endogenous dopamine in humans. Neuropsychopharmacol 17:162–174

    Article  CAS  Google Scholar 

  • Laruelle M, Iyer RN, Al-Tikriti MS, Zea-Ponce Y, Malison R, Zoghbi SS, Baldwin RM, Kung HF, Charney DS, Hoffer PB, Innis RB, Bradberry CW (1997b) Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates. Synapse 25:1–14

    Article  PubMed  CAS  Google Scholar 

  • Lawler CP, Prioleau C, Lewis MM, Mak C, Jiang D, Schetz JA, Gonzalez AM, Sibley DR, Mailman RB (1999) Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacol 20:612–627

    Article  CAS  Google Scholar 

  • Lee SP, So CH, Rashid AJ, Varghese G, Cheng R, Lanca AJ, O’Dowd BF, George SR (2004) Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem 279:35671–35678

    Article  PubMed  CAS  Google Scholar 

  • Leff P, Martin GR (1986) Peripheral 5-HT2-like receptors. Can they be classified with the available antagonists? Brit J Pharmacol 88:585–593

    CAS  Google Scholar 

  • Leysen JE, Gommeren WJ (1984) The dissociation of unlabelled dopamine antagonists and agonists from the dopamine D2-receptor. Implication of an original filter method. J Receptor Res 4:817–845

    CAS  Google Scholar 

  • Lidow MS, Goldman-Rakic PS (1994) A common action of clozapine, haloperidol, and remoxipride on D1- and D2- dopaminergic receptors in the primate cerebral cortex. Proc Natl Acad Sci USA 91:4353–4356

    Article  PubMed  CAS  Google Scholar 

  • Lidow MS, Goldman-Rakic PS (1997) Differential regulation of D2 and D4 dopamine receptor mRNAs in the primate cerebral cortex vs neostriatum: effects of chronic treatment with typical and atypical antipsychotic drugs. J Pharmacol Exp Ther 283:939–946

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Kane JM, Alvir J (1987) Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology 91:415–433

    Article  PubMed  CAS  Google Scholar 

  • Lindgren N, Usiello A, Goiny M, Haycock J, Erbs E, Greengard P, Hokfelt T, Borrelli E, Fisone G (2003) Distinct roles of dopamine D2L and D2S receptor isoforms in the regulation of protein phosphorylation at presynaptic and postsynaptic sites. Proc Natl Acad Sci USA 100:4305–4309

    Article  PubMed  CAS  Google Scholar 

  • Lipworth BJ (2002) Antagonism of long-acting beta2-adrenoceptor agonism. Brit J Clin Pharmacol 54:231–245

    Article  CAS  Google Scholar 

  • Liu YF, Civelli O, Grandy DK, Albert PR (1992) Differential sensitivity of the short and long human dopamine D2 receptor subtypes to protein kinase C. J Neurochem 59:2311–2317

    Article  PubMed  CAS  Google Scholar 

  • Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115:455–465

    PubMed  CAS  Google Scholar 

  • Mager DE, Wyska E, Jusko WJ (2003) Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 31:510–519

    Article  PubMed  CAS  Google Scholar 

  • Malany S, Hernandez LM, Smith WF, Crowe PD, Hoare SRJ (2009) Analytical method for simultaneously measuring ex vivo drug receptor occupancy and dissociation rate: application to (R)-dimethindene occupancy of central histamine H1 receptors. J Recept Sig Transd Res 29:84–93

    Google Scholar 

  • Malmberg A, Mohell N (1995) Characterization of [3H]quinpirole binding to human dopamine D2A and D3 receptors: effects of ions and guanine nucleotides. J Pharmacol Exp Ther 274:790–797

    PubMed  CAS  Google Scholar 

  • Malmberg A, Mohell N, Backlund Höök B, Johansson AM, Hacksell U, Nordvall G (1998) Interactions of ligands with active and inactive conformations of the dopamine D2 receptor. Eur J Pharmacol 346:299–307

    Article  PubMed  CAS  Google Scholar 

  • Marchese A, Paing MM, Temple BR, Trejo J (2008) G protein coupled receptor sorting to endosomes and lysosomes. Annu Rev Pharmacol 48:601–629

    Article  CAS  Google Scholar 

  • Masri B, Salahpour A, Didriksen M, Ghisi V, Beaulieu JM, Gainetdinov RR, Caron MG (2008) Antagonism of dopamine D2 receptor/beta-arrestin 2 interaction is a common property of clinically effective antipsychotics. Proc Natl Acad Sci USA 105:13656–13661

    Article  PubMed  CAS  Google Scholar 

  • Meibohm B, Derendorf H (1997) Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharm Th 35:401–413

    CAS  Google Scholar 

  • Meller E, Bohmaker K, Namba Y, Friedhoff AJ, Goldstein M (1987) Relationship between receptor occupancy and response at striatal dopamine autoreceptors. Mol Pharmacol 31:592–598

    PubMed  CAS  Google Scholar 

  • Meller E, Enz A, Goldstein M (1988) Absence of receptor reserve at striatal dopamine receptors regulating cholinergic neuronal activity. Eur J Pharmacol 155:151–154

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY (1999) The role of serotonin in antipsychotic drug action. Neuropsychopharmacol 21:106S–115S

    CAS  Google Scholar 

  • Meltzer HY (2002) Mechanism of action of atypical antipsychotic drugs. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams & Wilkins, Philadelphia, pp 819–831

    Google Scholar 

  • Miyake N, Thompson J, Skinbjerg M, Abi-Dargham A (2010) Presynaptic dopamine in schizophrenia. CNS Neurosci Ther 17:104–109

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Duncan GE, Marx CE, Lieberman JA (2005) Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiat 10:79–104

    Article  CAS  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  PubMed  CAS  Google Scholar 

  • Mogenson GJ, Yang CR, Yim CY (1988) Influence of dopamine on limbic inputs to the nucleus accumbens. Ann N Y Acad Sci 537:86–100

    Article  PubMed  CAS  Google Scholar 

  • Moreland RB, Nakane M, Donnelly-Roberts DL, Miller LN, Chang R, Uchic ME, Terranova MA, Gubbins EJ, Helfrich RJ, Namovic MT, El-Kouhen OF, Masters JN, Brioni JD (2004) Comparative pharmacology of human dopamine D2-like receptor stable cell lines coupled to calcium flux through Gaqo5. Biochem Pharmacol 68:761–772

    Article  PubMed  CAS  Google Scholar 

  • Morsing P, Adler G, Brandt-Eliasson U, Karp L, Ohlson K, Renberg L, Sjöquist PO, Abrahamsson T (1999) Mechanistic differences of various AT1-receptor blockers in isolated vessels of different origin. Hypertension 33:1406–1413

    PubMed  CAS  Google Scholar 

  • Motulsky HJ, Mahan LC (1984) The kinetics of competitive radioligand binding predicted by the law of mass action. Mol Pharmacol 25:1–9

    PubMed  CAS  Google Scholar 

  • Mukherjee J, Christian BT, Narayanan TK, Shi S, Mantil J (2001) Evaluation of dopamine D2 receptor occupancy by clozapine, risperidone, and haloperidol in vivo in the rodent and nonhuman primate brain using [18F]-fallypride. Neuropsychopharmacol 25:476–488

    Article  CAS  Google Scholar 

  • Narendran R, Hwang DR, Slifstein M, Talbot PS, Erritzoe D, Huang Y, Cooper TB, Martinez D, Kegeles LS, Abi-Dargham A, Laruelle M (2004) In vivo vulnerability to competition by endogenous dopamine: comparison of the D2 receptor agonist radiotracer (-)-N-[11 C]propyl-norapomorphine ([11 C]NPA) with the D2 receptor antagonist radiotracer [11 C]-raclopride. Synapse 52:188–208

    Article  PubMed  CAS  Google Scholar 

  • Narendran R, Hwang DR, Slifstein M, Hwang Y, Huang Y, Ekelund J, Guillin O, Scher E, Martinez D, Laruelle M (2005) Measurement of the proportion of D2 receptors configured in state of high affinity for agonists in vivo: a positron emission tomography study using [11 C]N-propyl-norapomorphine and [11 C]raclopride in baboons. J Pharmacol Exp Ther 315:80–90

    Article  PubMed  CAS  Google Scholar 

  • Neubig RR, Gantzos RD, Brasier RS (1985) Agonist and antagonist binding to alpha2-adrenergic receptors in purified membranes from human platelets. Implications of receptor-inhibitory nucleotide-binding protein stoichiometry. Mol Pharmacol 28:475–486

    PubMed  CAS  Google Scholar 

  • Neubig RR, Gantzos RD, Thomsen WJ (1988) Mechanism of agonist and antagonist binding to alpha2 adrenergic receptors: evidence for a precoupled receptor.guanine nucleotide protein complex. Biochemistry 27:2374–2384

    Article  PubMed  CAS  Google Scholar 

  • Neve KA, Kozlowski MR, Rosserg MP (1992) Dopamine D2 receptor stimulation of Na+/H+ exchange assessed by quantification of extracellular acidification. J Biol Chem 267:25748–25753

    PubMed  CAS  Google Scholar 

  • Ng GY, O’Dowd BF, Lee SP, Chung H, Brann MR, Seeman P, George SR (1996) Dopamine D2 receptor dimers and receptor-blocking peptides. Biochem Biophys Res Commun 227:200–204

    Article  PubMed  CAS  Google Scholar 

  • Nickolls SA, Strange PG (2004) The influence of G protein subtype on agonist action at D2 dopamine receptors. Neuropharmacology 47:860–872

    Article  PubMed  CAS  Google Scholar 

  • Nilsson CL, Eriksson E (1993) Haloperidol increases prolactin release and cyclic AMP formation in vitro: inverse agonism at dopamine D2 receptors? J Neural Transm 92:213–220

    Article  CAS  Google Scholar 

  • Nordström A-L, Farde L, Halldin C (1992) Time course of D2-dopamine receptor occupancy examined by PET after single oral doses of haloperidol. Psychopharmacology 106:433–438

    Article  PubMed  Google Scholar 

  • Ojima M, Inada Y, Shibouta Y, Wada T, Sanada T, Kubo K, Nishikawa K (1997) Candesartan (CV-11974) dissociates slowly from the angiotensin AT1 receptor. Eur J Pharmacol 319:137–146

    Article  PubMed  CAS  Google Scholar 

  • Oldham WM, Hamm HE (2008) Heterotrimeric G-protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9:60–71

    Article  PubMed  CAS  Google Scholar 

  • Olsen CK, Brennum LT, Kreilgaard M (2008) Using pharmacokinetic-pharmacodynamic modelling as a tool for prediction of therapeutic effective plasma levels of antipsychotics. Eur J Pharmacol 584:318–327

    Article  PubMed  CAS  Google Scholar 

  • Olson T (2005) Does clozapine work by blocking spikes and sparing bursts? Med Hypotheses 65:68–78

    Article  PubMed  CAS  Google Scholar 

  • Olsson H, Farde L (2001) Potentials and pitfalls using high affinity radioligands in PET and SPET determinations on regional drug induced D2 receptor occupancy—a simulation study based on experimental data. NeuroImage 14:936–945

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS (2002) New determinants of receptor-effector coupling: trafficking and compartmentation in membrane microdomains. Mol Pharmacol 61:473–476

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Post SR, Insel PA (2000) Stoichiometry and compartmentation in G protein-coupled receptor signaling: implications for therapeutic interventions involving Gs. J Pharmacol Exp Ther 294:407–412

    PubMed  CAS  Google Scholar 

  • Packeu A, De Backer J-P, Van Liefde I, Vanderheyden P, Vauquelin G (2008) Antagonist–dopamine D2L-receptor interactions in intact cells. Biochem Pharmacol 75:2192–2203

    Article  PubMed  CAS  Google Scholar 

  • Packeu A, Béghin T, De Backer J-P, Vauquelin G (2010a) Antagonist-D2S-dopamine receptor interactions in intact recombinant Chinese hamster ovary cells. Fund Clin Pharmacol 24:293–303, 513 (title correction)

    Article  CAS  Google Scholar 

  • Packeu A, De Backer J-P, Vauquelin G (2010b) Non-competitive interaction between raclopride and spiperone on human D2L-receptors in intact recombinant Chinese hamster ovary cells. Fund Clin Pharmacol 24:283–291

    Article  CAS  Google Scholar 

  • Packeu A, Wennerberg M, Ballendran A, Vauquelin G (2010c) Estimation of the dissociation rate of unlabelled ligand-receptor complexes by a “two-step” competition binding approach. Brit J Pharmacol 161:1311–1328

    Article  CAS  Google Scholar 

  • Paspalas CD, Rakic P, Goldman-Rakic PS (2006) Internalization of D2 dopamine receptors is clathrin-dependent and select to dendro-axonic appositions in primate prefrontal cortex. Eur J Neurosci 24:1395–1403

    Article  PubMed  Google Scholar 

  • Pauwels PJ, Tardif S, Wurch T, Colpaert FC (2001a) Real-time analysis of dopamine: antagonist interactions at recombinant human D2long receptor upon modulation of its activation state. Brit J Pharmacol 134:88–97

    Article  CAS  Google Scholar 

  • Pauwels PJ, Finana F, Tardif S, Wurch T, Colpaert FC (2001b) Dynamic dopamine-antagonist interactions at recombinant human dopamine D2short receptor: dopamine-bound versus antagonist-bound receptor states. J Pharmacol Exp Ther 297:133–140

    PubMed  CAS  Google Scholar 

  • Pettersson F, Pontén H, Waters N, Waters S, Sonesson C (2010) Synthesis and evaluation of a set of 4-phenylpiperidines and 4-phenylpiperazines as D2 receptor ligands and the discovery of the dopaminergic stabilizer 4-[3-(methylsulfonyl)phenyl]-1-propylpiperidine (huntexil, pridopidine, ACR16). J Med Chem 53:2510–2520

    Article  PubMed  CAS  Google Scholar 

  • Petty RG (1999) Prolactin and antipsychotic medications: mechanism of action. Schizophr Res 35:S67–S73

    Article  PubMed  Google Scholar 

  • Pierce KL, Lefkowitz RJ (2001) Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors. Nat Rev Neurosci 2:727–733

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:655–667

    Article  PubMed  CAS  Google Scholar 

  • Pilowsky LS, Mulligan RS, Acton PD, Ell PJ, Costa DC, Kerwin RW (1997) Limbic selectivity of clozapine. Lancet 350:490–491

    Article  PubMed  CAS  Google Scholar 

  • Ploeger BA, van der Graaf PH, Danhof M (2009) Incorporating receptor theory in mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling. Drug Metab Pharmacok 24:3–15

    Article  CAS  Google Scholar 

  • Raleigh F (1996) Use of novel antipsychotic drugs. Pharmacotherapy 16:160S–165S

    PubMed  CAS  Google Scholar 

  • Ransnäs LA, Insel PA (1988) Quantitation of the guanine nucleotide binding regulatory protein Gs in S49 cell membranes using antipeptide antibodies to αs. J Biol Chem 263:9482–9485

    PubMed  Google Scholar 

  • Rayport S, Sulzer D (1995) Visualization of antipsychotic drug binding to living mesolimbic neurons reveals D2 receptor, acidotropic, and lipophilic components. J Neurochem 65:691–703

    Article  PubMed  CAS  Google Scholar 

  • Remington G, Kapur S (2000) Atypical antipsychotics: are some more atypical than others? Psychopharmacology 148:3–15

    Article  PubMed  CAS  Google Scholar 

  • Rhodes DG, Sarmiento JG, Herbette LG (1985) Kinetics of binding of membrane-active drugs to receptor sites. Diffusion-limited rates for a membrane bilayer approach of 1,4-dihydropyridine calcium channel antagonists to their active site. Mol Pharmacol 27:612–623

    PubMed  CAS  Google Scholar 

  • Rice ME, Cragg SJ (2008) Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res Rev 58:303–313

    Article  PubMed  CAS  Google Scholar 

  • Robert V, Pinton P, Tosello V, Rizzuto R, Pozzan T (2000) Recombinant aequorin as tool for monitoring calcium concentration in subcellular compartments. Meth Enzymol 327:440–456

    Google Scholar 

  • Roberts DJ, Strange PG (2005) Mechanisms of inverse agonist action at D2 dopamine receptors. Brit J Pharmacol 145:34–42

    Article  CAS  Google Scholar 

  • Roberts DJ, Lin H, Strange PG (2004a) Investigation of the mechanism of agonist and inverse agonist action at D2 dopamine receptors. Biochem Pharmacol 67:1657–1665

    Article  PubMed  CAS  Google Scholar 

  • Roberts DJ, Lin H, Strange PG (2004b) Mechanisms of agonist action at D2 dopamine receptors. Mol Pharmacol 66:1573–1579

    Article  PubMed  CAS  Google Scholar 

  • Salimpoor VN, Benovoy M, Larcher K, Dagher Aand Zatorre RJ (2010) Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci 14:257–262

    Article  CAS  Google Scholar 

  • Samama P, Cotecchia S, Costa Tand Lefkowitz RJ (1993) A mutation-induced activated state of the beta2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 268:4625–4636

    PubMed  CAS  Google Scholar 

  • Sanger DJ (2004) The search for novel antipsychotics: pharmacological and molecular targets. Expt Opin Ther Tar 8:631–641

    Article  CAS  Google Scholar 

  • Schmidt M, Jansens L, Kent J, Anghelecu I, Husken G, Sinha V, Mannaert E (2010) Efficay and safety of JNJ-37822681, a fast-dissociating D2 antagonist in the treatment of schizophrenia. Eur Neuropsychopharmacol 20:S484–S485

    Article  Google Scholar 

  • Schotte A, Janssen PF, Gommeren W, Luyten WH, Van Gompel P, Lesage AS, De Loore K, Leysen JE (1996) Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology 124:57–73

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2007) Multiple dopamine functions at different time courses. Annu Rev Neurosci 30:259–288

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (1992) Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacol 7:261–284

    CAS  Google Scholar 

  • Seeman P (1995) Therapeutic receptor-blocking concentrations of neuroleptics. Int Clin Psychopharmacol 10(Suppl 3):5–13

    PubMed  Google Scholar 

  • Seeman P (2002) Atypical antipsychotics: mechanism of action. Can J Psychiat 47:27–38

    Google Scholar 

  • Seeman P (2005) An update of fast-off dopamine D2 atypical antipsychotics. Am J Psychiat 162:1984–1985

    Article  PubMed  Google Scholar 

  • Seeman P (2008) Dopamine D2High receptors on intact cells. Synapse 62:314–318

    Google Scholar 

  • Seeman P (2009) Dopamine D High2 receptors measured ex vivo are elevated in amphetamine-sensitized animals. Synapse 63:186–192

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (2011) All roads to schizophrenia lead to dopamine supersensitivity and elevated dopamine D High2 receptors. CNS Neurosci Ther 17:118–132

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Kapur S (1997) Clozapine occupies high levels of dopamine D2 receptors. Life Sci 160:PL 207–PL 216

    Google Scholar 

  • Seeman P, Tallerico T (1998) Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors. Mol Psychiat 3:123–134

    Article  CAS  Google Scholar 

  • Seeman P, Tallerico T (1999) Rapid release of antipsychotic drugs from dopamine D2 receptors: an explanation for low receptor occupancy and early clinical relapse upon withdrawal of clozapine or quetiapine. Am J Psychiat 156:876–884

    PubMed  CAS  Google Scholar 

  • Seeman P, Van Tol HH (1995) Deriving the therapeutic concentrations for clozapine and haloperidol: the apparent dissociation constant of a neuroleptic at the dopamine D2 or D4 receptor varies with the affinity of the competing radioligand. Eur J Pharmacol 291:59–66

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Chau-Wong M, Tedesco J, Wong K (1975) Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Nat Acad Sci USA 72:4376–4380

    Article  CAS  Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neurolepticrdopamine receptors. Nature 261:717–719

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Guan HC, Civelli O, Van Tol HHM, Sunahara RK, Niznik HB (1992) The cloned dopamine D2 receptor reveals different densities for dopamine receptor antagonist ligands. Implications for human brain positron emission tomography. Eur J Pharmacol 227:139–146

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Corbett R, Nam D, Van Tol HHM (1996) Dopamine and serotonin receptors: amino acid sequences, and clinicalroleinneu-roleptic parkinsonism. Jpn J Pharmacol 71:187–204

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Corbett R, Van Tol HHM (1997) Atypical neuroleptics have low affinity for dopamine D2 receptors or are selective for D4 receptors. Neuropsychopharmacol 16:93–110, discussion 111-135

    Article  CAS  Google Scholar 

  • Seeman P, Nam D, Ulpian C, Liu IS, Tallerico T (2000) New dopamine receptor, D2(Longer), with unique TG splice site, in human brain. Brain Res Mol Brain Res 76:132–141

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Tallerico T, Ko F, Tenn C, Kapur S (2002) Amphetamine- sensitized animals show a marked increase in dopamine D high2 receptors occupied by endogenous dopamine, even in the absence of acute challenges. Synapse 46:235–239

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Tallerico T, Ko F (2003) Dopamine displaces [3H]domperidone from high-affinity sites of the dopamine D2 receptor, but not [3H]raclopride or [3H]spiperone in isotonic medium: implications for human positron emission tomography. Synapse 49:209–215

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Schwarz J, Chen JF, Szechtman H, Perreault M, McKnight GS, Roder JC, Quirion R, Boksa P, Srivastava LK, Yanai K, Weinshenker D, Sumiyoshi T (2006) Psychosis pathways converge via D high2 dopamine receptors. Synapse 60:319–346

    Article  PubMed  CAS  Google Scholar 

  • Seneca N, Finnema SJ, Farde L, Gulyás B, Wikström HV, Halldin C, Innis RB (2006) Effect of amphetamine on dopamine D2 receptor binding in nonhuman primate brain: a comparison of the agonist radioligand [11C]MNPA and antagonist [11C]raclopride. Synapse 59:260–269

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Aoki C, Pickel VM (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J Neurosci 14:88–106

    PubMed  CAS  Google Scholar 

  • Sesack SR, Carr DB, Omelchenko N, Pinto A (2003) Anatomical substrates for glutamate-dopamine interactions: evidence for specificity of connections and extrasynaptic actions. Ann N Y Acad Sci 1003:36–52

    Article  PubMed  CAS  Google Scholar 

  • Severne Y, Coppens D, Bottari S, Riviere M, Kram R, Vauquelin G (1984) The influence of the beta-adrenergic receptor concentration on their functional coupling to the adenylate cyclase system. Proc Natl Acad Sci USA 81:4637–4641

    Article  PubMed  CAS  Google Scholar 

  • Severne Y, IJzerman A, Nerme V, Zimmerman H, Vauquelin G (1986) Shallow agonist competition binding curves for beta-adrenergic receptors: the role for tight agonist binding. Mol Pharmacol 31:69–73

    Google Scholar 

  • Sibley DR (1995) Molecular biology of dopamine receptors. In: Ariano MA, Surmeier DJ (eds) Molecular and cellular mechanisms of neostriatal function. Landes RG, Austin, pp 255–272

    Google Scholar 

  • Sibley DR, Leff SE, Creese I (1982) Interactions of novel dopaminergic ligands with D-1 and D-2 dopamine receptors. Life Sci 31:637–645

    Google Scholar 

  • Sibley DR, Mahan LC, Creese I (1983) Dopamine receptor binding on intact cells. Absence of a high-affinity agonist-receptor binding state. Mol Pharmacol 23:295–302

    PubMed  CAS  Google Scholar 

  • Sibley D, Hazelwood L, Roof R, Free RB, Han Y, Javitch J (2011) Membrane lipid rafts are required for D2 dopamine receptor signaling. Poster, presented at the19th Congress of the European Congress of Psychiatry; Prague, 3/2011. Eur Psychiat 26(suppl 1):910

    Article  Google Scholar 

  • Skinbjerg M, Liow J-S, Seneca N, Hong J, Lu S, Thorsell A, Heilig M, Pike VW, Halldin C, Sibley DR, Innis RB (2010) D2 dopamine receptor internalization prolongs the decrease of radioligand binding after amphetamine: a PET study in a receptor internalization-deficient mouse model. NeuroImage 50:1402–1407

    Google Scholar 

  • Skinbjerg M, Namkung Y, Halldin C, Innis RB, Sibley DR (2009) Pharmacological characterization of 2-methoxy-N-propylnorapomorphine’s interactions with D2 and D3 dopamine receptors. Synapse 63:462–475

    Article  PubMed  CAS  Google Scholar 

  • Smith C, Rahman T, Toohey N, Mazurkiewicz J, Herrick-Davis K, Teitler M (2006) Risperidone irreversibly binds to and inactivates the h5-HT7 serotonin receptor. Mol Pharmacol 70:1264–1270

    Article  PubMed  CAS  Google Scholar 

  • Spivak CE, Oz M, Beglan CL, Shrager RI (2006) Diffusion delays and unstirred layer effects at monolayer cultures of Chinese hamster ovary cells: radioligand binding, confocal microscopy, and mathematical simulations. Cell Biochem Biophys 45:43–58

    Article  PubMed  CAS  Google Scholar 

  • Sternweis PC, Robishaw JD (1984) Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J Biol Chem 259:13806–13813

    PubMed  CAS  Google Scholar 

  • Suhara T, Okauchi T, Sudo Y, Takano A, Kawabe K, Maeda J, Kapur S (2002) Clozapine can induce high dopamine D2 receptor occupancy in vivo. Psychopharmacology 160:107–112

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591

    PubMed  CAS  Google Scholar 

  • Swinney DC (2004) Biochemical mechanisms of drug action: what does it take for success? Nat Rev Drug Discov 3:801–808

    Article  PubMed  CAS  Google Scholar 

  • Swinney DC (2006a) Biochemical mechanisms of new molecular entities (NMEs) approved by United States FDA during 2001-2004: mechanisms leading to optimal efficacy and safety. Curr Top Med Chem 6:461–478

    Article  PubMed  CAS  Google Scholar 

  • Swinney DC (2006b) Can binding kinetics translate to a clinically differentiated drug? From theory to practice. Lett Drug Des Discov 3:569–574

    Article  CAS  Google Scholar 

  • Swinney DC (2008) Applications of binding kinetics to drug discovery: translation of binding mechanisms to clinically differentiated therapeutic responses. Int J Pharm Med 22:23–34

    Google Scholar 

  • Swinney DC (2009) The role of binding kinetics in therapeutically useful drug action. Curr Opin Drug Disc Dev 12:31–39

    CAS  Google Scholar 

  • Szczuka A, Packeu A, Wennerberg M, Vauquelin G (2009) Molecular mechanism of the persistent bronchodilatory effect of the partial beta2-adrenoceptor agonist salmeterol. Brit J Pharmacol 158:183–194

    Article  CAS  Google Scholar 

  • Tadori Y, Forbes RA, McQuade RD, Kikuchi T (2009) Receptor reserve-dependent properties of antipsychotics at human dopamine D2 receptors. Eur J Pharmacol 607:35–40

    Article  PubMed  CAS  Google Scholar 

  • Talvik M, Nordström AL, Nyberg S, Olsson H, Halldin C, Farde L (2001) No support for regional selectivity in clozapine-treated patients: a PET study with [11 C]raclopride and [11 C]FLB 457. Am J Psychiat 58:926–930

    Google Scholar 

  • Tauscher J, Jones C, Remington G, Zipursky RB, Kapur S (2002) Significant dissociation of brain and plasma kinetics with antipsychotics. Mol Psychiatr 7:317–321

    Article  CAS  Google Scholar 

  • Tresadern G, Bartolome JM, Macdonald GJ, Langlois X (2011) Molecular properties affecting fast dissociation from the D2 receptor. Bioorg Med Chem 19:2231–2241

    Article  PubMed  CAS  Google Scholar 

  • Tummino PJ, Copeland RA (2008) Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry 47:5481–5492

    Article  PubMed  CAS  Google Scholar 

  • Turrone P, Kapur S, Seeman MV, Flint AJ (2002) Elevation of prolactin levels by atypical antipsychotics. Am J Psychiat 159:133–135

    Article  PubMed  Google Scholar 

  • Turu G, Várnai P, Gyombolai P, Szidonya L, Offertaler L, Bagdy G, Kunos G, Hunyady L (2009) Paracrine transactivation of the CB1 cannabinoid receptor by AT1 angiotensin and other Gq/11 protein-coupled receptors. J Biol Chem 284:16914–16921

    Article  PubMed  CAS  Google Scholar 

  • Usiello A, Baik JH, Rouge-Pont F, Picetti R, Dierich A, LeMeur M, Piazza PV, Borrelli E (2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408:199–203

    Article  PubMed  CAS  Google Scholar 

  • Vallar L, Muca C, Magni M, Albert P, Bunzow J, Meldolesi J, Civelli O (1990) Differential coupling of dopaminergic D2 receptors expressed in different cell types. Stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis in Ltk- fibroblasts, hyperpolarization, and cytosolic-free Ca2+ concentration decrease in GH4C1 cells. J Biol Chem 265:10320–10326

    PubMed  CAS  Google Scholar 

  • van Os J, Kapur S (2009) Schizophrenia. Lancet 374:635–645

    Article  PubMed  CAS  Google Scholar 

  • Van Rossum JM (1967) The significance of dopamine-receptor blockade for the action of neuroleptic drugs. In: Brill H, Cole JO, Deniker P, Hippius H, Bradley PB (eds) Neuro-psycho-pharmacology, Proceedings of the 5th Int. Congress of the Collegium Internationale Neuro-Psycho-pharmacologicum, March 1966. Excerpta Medica Foundation, Amsterdam, pp 321–329

    Google Scholar 

  • Vanhauwe JF, Fraeyman N, Francken BJ, Luyten WH, Leysen JE (1999) Comparison of the ligand binding and signaling properties of human dopamine D2 and D3 receptors in Chinese hamster ovary cells. J Pharmacol Exp Ther 290:908–916

    PubMed  CAS  Google Scholar 

  • Vauquelin G (2010) Rebinding: or why drugs may act longer in vivo than expected from their in vitro target residence time. Expert Opin Drug Discov 5:927–941

    Article  CAS  Google Scholar 

  • Vauquelin G, Charlton S (2010) Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. Brit J Pharmacol 161:488–508

    Article  CAS  Google Scholar 

  • Vauquelin G, Maguire ME (1980) Inactivation of beta-adrenergic receptors by N-ethylmaleimide in S49 lymphoma cells: receptor heterogeneity in relation to coupling to adenylate cyclase. Mol Pharmacol 18:362–369

    PubMed  CAS  Google Scholar 

  • Vauquelin G, Packeu A (2009) Ligands, their receptors and … plasma membranes. Mol Cell Endocrinol 311:1–10

    Article  PubMed  CAS  Google Scholar 

  • Vauquelin G, Szczuka A (2007) Kinetic versus allosteric mechanisms to explain insurmountable antagonism and delayed ligand dissociation. Neurochem Int 51:254–260

    Article  PubMed  CAS  Google Scholar 

  • Vauquelin G, Van Liefde I (2006) Slow antagonist dissociation and long-lasting in vivo receptor protection. Trends Pharmacol Sci 27:356–359

    Article  PubMed  CAS  Google Scholar 

  • Vauquelin G, von Mentzer P (2007) In: Vauquelin G, von Mentzer B (eds) G-protein coupled receptors: Molecular pharmacology. John Wiley and Sons Ltd, Chichester, pp 53–64, 163-175 and 185-191

    Chapter  Google Scholar 

  • Vauquelin G, Severne Y, Convents A, Nerme V, Abrahamsson T (1988) Agonist-mediated activation of adrenergic receptors. In: Melchiorre C, Giannella M (eds) Recent advances in receptor chemistry. Elsevier Science Publishers, Amsterdam, pp 43–61

    Google Scholar 

  • Vauquelin G, Morsing P, Fierens FLP, De Backer JP, Vanderheyden PML (2001) A two-state receptor model for the interaction between angiotensin II AT1 receptors and their non-peptide antagonists. Biochem Pharmacol 61:277–284

    Article  PubMed  CAS  Google Scholar 

  • Vauquelin G, Van Liefde I, Vanderheyden P (2002a) Models and methods for studying insurmountable antagonism. Trends Pharmacol Sci 23:514–518

    Article  PubMed  CAS  Google Scholar 

  • Vauquelin G, Van Liefde I, Birzbier BB, Vanderheyden PML (2002b) New insights in insurmountable antagonism. Fund Clin Pharmacol 16:263–272

    Article  CAS  Google Scholar 

  • Vauquelin G, Fierens F, Van Liefde I (2006) Long-lasting AT1 receptor binding and protection by candesartan: comparison to other biphenyl-tetrazole sartans. J Hypertens 24:S23–S30

    Article  CAS  Google Scholar 

  • Verheijen I, Tourlousse D, Vanderheyden PML, De Backer JP, Vauquelin G (2004) Effect of saponin and filipin on antagonist binding to AT1 receptors in intact cells. Biochem Pharmacol 67:601–606

    Article  CAS  Google Scholar 

  • Wang Y, Xu R, Sasaoka T, Tonegawa S, Kung MP, Sankoorikal EB (2000) Dopamine D2long receptor-deficient mice display alterations in striatum-dependent functions. J Neurosci 20:8305–8314

    PubMed  CAS  Google Scholar 

  • Weinberger DR, Laruelle M (2001) Neurochemical and neuropharmacological imaging in schizophrenia. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams & Wilkins, Philadelphia, pp 833–855

    Google Scholar 

  • Weiner DM, Burstein ES, Nash N, Croston GE, Currier EA, Vanover KE, Harvey SC, Donohue E, Hansen HC, Andersson CM, Spalding TA, Gibson DF, Krebs-Thomson K, Powell SB, Geyer MA, Hacksell U, Brann MR (2001) 5-Hydroxytryptamine2A receptor inverse agonists as antipsychotics. J Pharmacol Exp Ther 299:268–276

    PubMed  CAS  Google Scholar 

  • Wilson JM, Sanyal S, Van Tol HHM (1998) Dopamine D2 and D4 receptor ligands: relation to antipsychotic action. Eur J Pharmacol 351:273–286

    Article  PubMed  CAS  Google Scholar 

  • Wilson J, Lin H, Fu D, Javitch JA, Strange PG (2001) Mechanisms of inverse agonism of antipsychotic drugs at the D2 dopamine receptor: use of a mutant D2 dopamine receptor that adopts the activated conformation. J Neurochem 77:493–504

    Article  PubMed  CAS  Google Scholar 

  • Xiberas X, Martinot JL, Mallet L, Artiges E, Loc’H C, Mazière B, Paillère-Martinot ML (2001) Extrastriatal and striatal D2 dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Brit J Psychiat 179:503–508

    Article  PubMed  CAS  Google Scholar 

  • Yung KKL, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI (1995) Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65:709–730

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Monsma F (2009) The importance of drug-target residence time. Curr Opin Drug Discov Devel 12:488–496

    PubMed  CAS  Google Scholar 

  • Zhang R, Monsma F (2010) Binding kinetics and mechanism of action: toward the discovery and development of better and best in class drugs. Expert Opin Drug Discov 5:1023–1029

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Vauquelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vauquelin, G., Bostoen, S., Vanderheyden, P. et al. Clozapine, atypical antipsychotics, and the benefits of fast-off D2 dopamine receptor antagonism. Naunyn-Schmiedeberg's Arch Pharmacol 385, 337–372 (2012). https://doi.org/10.1007/s00210-012-0734-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-012-0734-2

Keywords

Navigation