Skip to main content
Log in

Mechanisms of action of atypical antipsychotic drugs: a critical analysis

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Various criteria used to define atypical antipsychotic drugs include: 1) decrease, or absence, of the capacity to cause acute extrapyramidal motor side effects (acute EPSE) and tardive dyskinesia (TD); 2) increased therapeutic efficacy reflected by improvement in positive, negative, or cognitive symptoms; 3) and a decrease, or absence, of the capacity to increase prolactin levels. The pharmacologic basis of atypical antipsychotic drug activity has been the target of intensive study since the significance of clozapine was first appreciated. Three notions have been utilized conceptually to explain the distinction between atypical versus typical antipsychotic drugs: 1) dose-response separation between particular pharmacologic functions; 2) anatomic specificity of particular pharmacologic activities; 3) neurotransmitter receptor interactions and pharmacodynamics. These conceptual bases are not mutually exclusive, and the demonstration of limbic versus extrapyramidal motor functional selectivity is apparent within each arbitrary theoretical base. This review discusses salient distinctions predominantly between prototypic atypical and typical antipsychotic drugs such as clozapine and haloperidol, respectively. In addition, areas of common function between atypical and typical antipsychotic drug action may also be crucial to our identification of pathophysiological foci of the different dimensions of schizophrenia, including positive symptoms, negative symptoms, and neurocognitive deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackenheil M, Hippius H (1977) Clozapine. In: Usdin E, Forrest IS (eds) Psychotherapeutic drugs. Part II Marcel Dekker, New York, pp 923–956

    Google Scholar 

  • Ackenheil M, Blatt B, Lampart C (1974) Biochemical changes in man and animal following clozapine treatment. J Pharmacol (Paris) 5 [Suppl 2]:1

    Google Scholar 

  • Aguilar MA, Minarro J, Pereziranzo N, Simon VM (1994) Behavioral profile of raclopride in agonistic encounters between male mice. Pharmacol Biochem Behav 47:753–756

    Google Scholar 

  • Ahlfors UG, Rimon R, Appelberg B, Hagert U, Harma P, Katila H, Mahlanen A, Mehtonen OP, Naukkarinen H, Outakoski J (1990) Remoxipride and haloperidol in schizophrenia: a double-blind multicentre study. Acta Psychiatr Scand Suppl 358:99–103

    Google Scholar 

  • Akai T, Yamaguchi M, Mizuta E, Kuno S (1993) Effects of terguride, a partial D2 agonist, on MPTP-lesioned parkinsonian cynomolgus monkeys. Ann Neurol 33:507–511

    Google Scholar 

  • Alekhina TA, Gilinskii MA, Kolpakov VG (1995) [The level of catecholamines and dihydroxyphenylacetic acid in the brain of rats with a hereditary predisposition to catalepsy]. Zh Vyssh Nerv Deiat Im I P Pavlova 45:180–184

    Google Scholar 

  • Altar CA, Boyar WC, Wasley A, Gerhardt SC, Liebman JM, Wood PL (1988) Dopamine neurochemical profile of atypical antipsychotics resembles that of D-1 antagonists. Naunyn Schmiedebergs Arch Pharmacol 338:162–168

    Google Scholar 

  • Anden NE, Stock G (1973) Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. J Pharm Pharmacol 25:346–348

    Google Scholar 

  • Andersen J, Korner A, Ostergaard P, Fensbo C, Birket-Smith M, Thiesen S, Hansen NR, Fogh M, Kristensen M, Moller-Nielsen EM (1990) A double blind comparative multicentre study of remoxipride and haloperidol in schizophrenia. Acta Psychiatr Scand Suppl 358:104–107

    Google Scholar 

  • Anderson GD, Rebec GV (1988) Clozapine and haloperidol in the amygdaloid complex: differential effects on dopamine transmission with long-term treatment. Biol Psychiatry 23:497–506

    Google Scholar 

  • Andreasen NC, Rezai K, Alliger R, Swayze VW 2d, Flaum M, Kirchner P, Cohen G, O'Leary DS (1992) Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch Gen Psychiatry 49:943–958

    Google Scholar 

  • Antelman SM, Caggiula AR (1977) Norepinephrine-dopamine interactions and behavior. Science 195:646–653

    Google Scholar 

  • Antoniou K, Kafetzopoulos E (1992) Behavioral effects of amphetamine and apomorphine after striatal lesions in the rat. Pharmacol Biochem Behav 43:705–722

    Google Scholar 

  • Arana GW, Ornsteen ML, Kanter F, Friedman HL, Greenblatt DJ, Shader RI (1986) The use of benzodiazepines for psychotic disorders: a literature review and preliminary clinical findings. Psychopharmacol Bull 22:77–87

    Google Scholar 

  • Arevalo GJ, Gershanik OS (1993) Modulatory effect of clozapine on levodopa response in Parkinson's disease: a preliminary study. Move Disord 8:349–354

    Google Scholar 

  • Arnold G, Trenkwalder C, Schwarz J, Oertel WH (1994) Zotepine reversibly induces akinesia and rigidity in Parkinson disease patients with resting tremor or drug-induced psychosis. Move Disord 9:238–240

    Google Scholar 

  • Arnt J, Hyttel J, Bach-Lauritsen T (1986) Further studies of the mechanism behind scopolamine-induced reversal of antistereotypic and cataleptogenic effects of neuroleptics in rats. Acta Pharmacol Toxicol (Copenh) 59:319–324

    Google Scholar 

  • Asghari V, Schoots O, Vankats S, Ohara K, Jovanovic V, Guan HC, Bunzow JR, Petronis A, Van Tol HHM (1994) Dopamine D4 receptor repeat: analysis of different native and mutant forms of the human and rat genes. Mol Pharmacol 46:364–373

    Google Scholar 

  • Ashby CR Jr, Wang RY (1990) Effect of antipsychotic drugs on 5-HT2 receptors in the medial prefrontal cortex: microiontophoretic studies. Brain Res 506:346–348

    Google Scholar 

  • Ashby CR Jr, Minabe Y, Edwards E, Wang RY (1991) Comparison of the effects of various typical and atypical antipsychotic drugs on the suppressant action of 2-methylserotonin on medial prefrontal cortical cells in the rat. Synapse 8:155–161

    Google Scholar 

  • Assie MB, Sleight AJ, Koek W (1993) Biphasic displacement of [3H]YM-09151-2 binding in the rat brain by thioridazine, risperidone and clozapine, but not by other antipsychotics. Eur J Pharmacol 237:183–189

    Google Scholar 

  • Auchus AP, Pickel VM (1992) Quantitative light microscopic demonstration of increased pallidal and striatal met5-enkephalin-like immunoreactivity in rats following chronic treatment with haloperidol but not with clozapine: implications for the pathogenesis of neuroleptic-induced movement disorders. Exp Neurol 117:17–27

    Google Scholar 

  • Auff E, Birkmayer W, Brucke T, Deecke L, Emich C, Goldenberg G, Hirsch E, Maly J, Muller C, Potzl G, Riederer P, Sofic E, Schnaberth G (1987) Ritanserin in the treatment of tremordominant Parkinson's disease: a preliminary study. New Trends Clin Neuropharmacol 1:149–158

    Google Scholar 

  • Awad G, Hogan TP (1994) Subjective response to neuroleptics and the quality of life - implications for treatment outcome. Acta Psychiatr Scand 89 [Suppl. 380]:27–32

    Google Scholar 

  • Awouters F, Niemegeers CJE, Megens AAHP, Meert TF, Janssen PAJ (1988) Pharmacological profile of ritanserin: a very specific central serotonin S2 antagonist. Drug Dev Res 15:61–73

    Google Scholar 

  • Baldessarini RJ, Frankenburg FR (1991) Clozapine. A novel antipsychotic agent. N Engl J Med 324:746–754

    Google Scholar 

  • Balsara JJ, Jadhav JH, Chandorkar AG (1979) Effect of drugs influencing central serotonergic mechanisms on haloperidol-induced catalepsy. Psychopharmacology 62:67–69

    Google Scholar 

  • Banerjee U, Sooi Lin G (1973) On the mechanism of central action of amphetamine: the role of catecholamines. Neuropharmacology 12:917–931

    Google Scholar 

  • Bardgett ME, Wrona CT, Newcomer JW, Csernansky JG (1993) Subcortical excitatory amino acid levels after acute and subchronic administration of typical and atypical neuroleptics. Eur J Pharmacol 230:245–250

    Google Scholar 

  • Barr CL, Kennedy JL, Lichter JB, Vantol HHM, Wetterberg L, Livak KJ, Kidd KK (1993) Alleles at the dopamine D-4 receptor locus do not contribute to the genetic susceptibility to schizophrenia in a large Swedish kindred. Am J Med Genet 48:218–222

    Google Scholar 

  • Bartholini G (1976) Differential effect of neuroleptic drugs on dopamine turnover in the extrapyramidal and limbic system. J Pharm Pharmacol 28:429–433

    Google Scholar 

  • Bartholini G, Haefely W, Jalfre M, Keller HH, Pletscher A (1972) Effects of clozapine on cerebral catecholaminergic neurone systems. Br J Pharmacol 46:736–740

    Google Scholar 

  • Bartholini G, Keller HH, Pletscher A (1973) Effect of neuroleptics on endogenous norepinephrine in rat brain. Neuropharmacology 12:751–756

    Google Scholar 

  • Beasley CM, Tollesfson GD, Tye ND, Moore NA (1993) Olanzapine: a potential “atypical” antipsychotic agent. Presented at the 32nd Annual Meeting of the American College of Neuropsychopharmacology, Hawaii

  • Benkert O, Wetzel H, Wiedemann K (1990) Dopamine autoreceptor agonists in the treatment of positive and negative schizophrenia. In: Yamachita I, Toru M, Coppen AJ (eds) Clinical neuropharmacology: proceedings from the 17th CINP Congress. Raven Press, New York, pp 178–179

    Google Scholar 

  • Bennett JP, Landow ER, Schuh LA (1993) Suppression of dyskinesias in advanced Parkinson's disease. II. Increasing daily clozapine doses suppress dyskinesias and improve parkinsonism symptoms. Neurology 43:1551–1555

    Google Scholar 

  • Berman KF, Torrey EF, Daniel DG, Weinberger DR (1992) Regional cerebral blood flow in monozygotic twins discordant and concordant for schizophrenia. Arch Gen Psychiatry 49:927–934

    Google Scholar 

  • Bersani G, Grispini A, Marini S, Pasini A, Valducci M, Ciani N (1986) Neuroleptic-induced extrapyramidal side effects: clinical perspectives with ritanserin (R 55667), a new selective 5-HT2 receptor blocking agent. Curr Ther Res 40:492–499

    Google Scholar 

  • Bersani G, Grispini A, Marini S, Pasini A, Valducci M, Ciani N (1990) 5-HT2 antagonist ritanserin in neuroleptic-induced parkinsonism: a double-blind comparison with orphenadrine and placebo. Clin Neuropharmacol 13:500–506

    Google Scholar 

  • Bersani G, Venturi P, Tanfani G, Pancheri P (1995) Cerebral ventricular enlargement and neuroleptic response in chronic schizophrenia: preliminary findings with risperidone. Hum Psychopharmacol Clin Exp 10:53–58

    Google Scholar 

  • Biazzi A, Fregnan GB (1980) Behavioral, anti-dopaminergic, and prohypnotic effects of neuroleptics during and after prolonged treatment. Adv Biochem Psychopharmacol 24:351–357

    Google Scholar 

  • Blaha CD, Lane RF (1987) Chronic treatment with classical and atypical antipsychotic drugs differentially decreases dopamine release in striatum and nucleus accumbens in vivo. Neurosci Lett 78:199–204

    Google Scholar 

  • Bluth R, Langnickel R, Ott T (1985) Modulation by dopaminergic and serotonergic systems of cholinergic interneurons in nucleus accumbens and striatum. Pol J Pharmacol Pharm 37:753–763

    Google Scholar 

  • Bluth R, Langnickel R (1985) Effects of haloperidol and low dose clozapine on the acetylcholine turnover rate in rat forebrain structures. Biomed Biochim Acta 44:1531–1539

    Google Scholar 

  • Bolden-Watson C, Watson MA, Murray KD, Isackson PJ, Richelson E (1993) Haloperidol but not clozapine increases neurotensin receptor mRNA levels in rat substantia nigra. J Neurochem 61:1141–1143

    Google Scholar 

  • Borenstein P, Bles G (1965) Effets cliniques et electroencephalographiques du metoclopramide en psychiatrie. Therapie 20:975–995

    Google Scholar 

  • Borison RL, Pathiraja AP, Diamond BI, Meibach RC (1992) Risperidone: clinical safety and efficacy in schizophrenia. Psychopharmacol Bull 28:213–218

    Google Scholar 

  • Bourdelais AJ, Deutch AY (1994) The effects of haloperidol and clozapine on extracellular GABA levels in the prefrontal cortex of the rat - an in vivo microdialysis study. Cereb Cortex 4:69–77

    Google Scholar 

  • Bowers MB, Rozitis A (1974) Regional differences in homovanillic acid concentration after acute and chronic anministration of antipsychotic drugs. J Pharm Pharmacol 26:743–745

    Google Scholar 

  • Bowery B, Rothwell LA, Seabrook GR (1994) Comparison between the pharmacology of dopamine receptors mediating the inhibition of cell firing in rat brain slices through the substantia nigra pars compacta and ventral tegmental area. Br J Pharmacol 112:873–880

    Google Scholar 

  • Boyson SJ, McGonigle P, Luthin GR, Wolfe BB, Molinoff PB (1988) Effects of chronic administration of neuroleptic and anticholinergic agents on densities of D2 dopamine and muscarinic cholinergic receptors in rat striatum. J Pharmacol Exp Ther 244:987–993

    Google Scholar 

  • Breier A, Buchanan RW, Elkashef A, Munson RC, Kirkpatrick B, Gellad F (1992) Brain morphology and schizophrenia. A magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures. Arch Gen Psychiatry 49: 921–926

    Google Scholar 

  • Breier A, Buchanan RW, Waltrip RW, Bryant NL, Goldstein DS (1993) Clozapine's superior efficacy is related to its noradrenergic properties. Soc Neurosci Abstr 19: 856

    Google Scholar 

  • Breier A, Buchanan RW, Waltrip RW 2nd, Listwak S, Holmes C, Gold stein DS (1994) The effect of clozapine on plasma norepinephrine — relationship to clinical efficacy. Neuropsychopharmacology 10: 1–7

    Google Scholar 

  • Britton DR, Curzon P, Yahiro L, Buckley M, Tufano M, Nadzan A (1992) Evaluation of a stable CCK agonist (A68552) in conditioned avoidance responding in mice, rats, and primates: comparison with typical and atypical antipsychotics. Pharmacol Biochem Behav 43: 369–376

    Google Scholar 

  • Brougham LR, Conway PG, Ellis DB (1991) Effect of ritanserin on the interaction of amfonelic acid and neuroleptic-induced striatal dopamine metabolism. Neuropharmacology 30: 1137–1140

    Google Scholar 

  • Buchanan RW, Holstein C, Breier A (1994) The comparative efficacy and long-term effect of clozapine treatment on neuropsychological test performance. Biol Psychiatry 36: 717–725

    Google Scholar 

  • Buckland PR, Odonovan MC, Mcguffin P (1993) Clozapine and sulpiride up-regulate dopamine-D(3) receptor messenger RNA levels. Neuropharmacology 32: 901–907

    Google Scholar 

  • Bunney BS (1992) Clozapine: a hypothesised mechanism for its unique clinical profile. Br J Psychiatry Suppl 17: 17–21

    Google Scholar 

  • Burki HR (1979) Biochemical methods for predicting the occurrence of tardive dyskinesia. Commun Psychopharmacol 3: 7–15

    Google Scholar 

  • Burki HR, Sayers AC, Ruch W, Asper H (1975) Clozapine and the dopamine hypothesis of schizophrenia, a critical appraisal. Pharmacopsychiatry 8: 115–121

    Google Scholar 

  • Burt DK, Hungerford SM, Crowner ML, Baez LA (1982) Postnatal development of a cholinergic influence on neuroleptic-induced catalepsy. Pharmacol Biochem Behav 16: 533–540

    Google Scholar 

  • Busatto GF, Pilowsky LS, Costa DC, Ell PJ, Verhoeff NPLG, Kerwin RW (1995) Dopamine D-2 receptor blockade in vivo with the novel antipsychotics risperidone and remoxipride — An I-123-IBZN single photon emission tomography (SPET) study. Psychopharmacology 117: 55–61

    Google Scholar 

  • Calderon SF, Sanberg PR, Norman AB (1988) Quinolinic acid lesions of rat striatum abolish D1- and D2-dopamine receptormediated catalepsy. Brain Res 450: 403–407

    Google Scholar 

  • Campion D, d'Amato T, Bastard C, Laurent C, Guedj F, Jay M, Dollfus S, Thibaut F, Petit M, Gorwood P et al (1994) Genetic study of dopamine D1, D2, and D4 receptors in schizophrenia. Psychiatry Res 51: 215–230

    Google Scholar 

  • Carlsson A (1988a) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1: 179–186

    Google Scholar 

  • Carlsson A (1988b) Dopamine autoreceptors and schizophrenia. In: Sen AK, Lee T (eds) Receptors and ligands in psychiatry. Cambridge University Press, Cambridge, pp 1–10

    Google Scholar 

  • Carlsson ML (1993) Are the disparate pharmacological profiles of competitive and un-competitive NMDA antagonists due to different baseline activities of distinct glutamatergic pathways? (hypothesis). J Neural Transm [Gen Sect] 94: 1–10

    Google Scholar 

  • Carlsson ML, Engberg G, Carlsson A (1994) Effects of D-cycloserine and (+)-HA-966 on the locomotor stimulation induced by NMDA antagonists and clonidine in monoamine-depleted mice. J Neural Transm [Gen Sect] 95: 223–233

    Google Scholar 

  • Carter CJ, Pycock CJ (1978) Studies on the role of catecholamines in the frontal cortex. Br J Pharmacol 62: 402P

  • Cascella NG, Macciardi F, Cavallini C, Smeraldi E (1994)d-Cycloserine adjuvant therapy to conventional neuroleptic treatment in schizophrenia — an open-label study. J Neural Transm [Gen Sect] 95: 105–111

    Google Scholar 

  • Casey DE (1989a) Clozapine: neuroleptic-induced EPS and tardive dyskinesia. Psychopharmacology 99 [Suppl]: S47-S53

    Google Scholar 

  • Casey DE (1989b) Serotonergic aspects of acute extrapyramidal syndromes in nonhuman primates. Psychopharmacol Bull 25: 457–459

    Google Scholar 

  • Casey DE (1992a) Dopamine D1 (SCH 23390) and D2 (haloperidol) antagonists in drug-naive monkeys. Psychopharmacology 107: 18–22

    Google Scholar 

  • Casey DE (1992b) The effect of 8-OH-DPAT on haloperidol-induced dystonia in nonhuman primates. Presentedat ACNP, 31st Ann Meeting, San Juan, PR

  • Casey DE (1993) Serotonergic and dopaminergic aspects of neuroleptic-induced extrapyramidal syndromes in nonhuman primates. Psychopharmacology 112 [1 Suppl]: S55-S59

    Google Scholar 

  • Casey DE (1994) Motor and mental aspects of acute extrapyramidal Syndromes. Acta Psychiatr Scand 89 [Suppl. 380]: 14–20

    Google Scholar 

  • Ceskova E, Svestka J (1993) Double-blind comparison of risperidone and haloperidol in schizophrenic and schizoaffective psychoses. Pharmacopsychiatry 26: 121–124

    Google Scholar 

  • Ceulemans DL, Gelders YG, Hoppenbrouwers ML, Reyntjens AJ, Janssen PA (1985) Effect of serotonin antagonism in schizophrenia: a pilot study with setoperone. Psychopharmacology 85: 329–332

    Google Scholar 

  • Chacko RC, Hurley RA, Jankovic J (1993) Clozapine use in diffuse Lewy body disease. J Neuropsychiatr Clin Neurosci 5: 206–208

    Google Scholar 

  • Chakos MH, Lieberman JA, Bilder RM, Borenstein M, Lerner G, Bogerts B, Wu H, Kinon B, Ashtari M (1994) Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. Am J Psychiatry 151: 1430–1436

    Google Scholar 

  • Chakos MH, Lieberman JA, Alvir J, Bilder R, Ashtari M (1995) Caudate nuclei volumes in schizophrenic patients treated with typical antipsychotics or clozapine. Lancet 345: 456–457

    Google Scholar 

  • Chakrabarti JK, Horsman L, Hotten TM, Pullar IA, Tupper DE, Wright FC (1980) 4-Piperaziny1-10H-thieno[2, 3-b][1, 5]benzodiazepines as potential neuroleptics. J Med Chem 23: 878–884

    Google Scholar 

  • Chen JP, Paredes W, Gardner EL (1991a) Chronic treatment with clozapine selectively decreases basal dopamine release in nucleus accumbens but not in caudate-putamen as measured by in vivo brain microdialysis: further evidence for depolarization block. Neurosci Lett 122: 127–131

    Google Scholar 

  • Chen JP, van Praag HM, Gardner EL (1991b) Activation of 5-HT3 receptor by 1-phenylbiguanide increases dopamine release in the rat nucleus accumbens. Brain Res 543: 354–357

    Google Scholar 

  • Chen JP, Paredes W, van Praag HM, Gardner EL (1992a) Serotonin denervation enhances responsiveness of presynaptic dopamine efflux to acute clozapine in nucleus accumbens but not in caudate-putamen. Brain Res 582: 173–179

    Google Scholar 

  • Chen JP, Paredes W, Van Praag HM, Lowinson JH, Gardner EL (1992b) Presynaptic dopamine release is enhanced by 5-HT3 receptor activation in medial prefrontal cortex of freely moving rats. Synapse 10: 264–266

    Google Scholar 

  • Chen JP, Ruan D, Paredes W, Gardner EL (1992c) Effects of acute and chronic clozapine on dopaminergic function in medial prefrontal cortex of awake, freely moving rats. Brain Res 571: 235–241

    Google Scholar 

  • Chiodo LA, Bunney BS (1983) Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci 3: 1607–1619

    Google Scholar 

  • Chiodo LA, Bunney BS (1985) Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons. J Neurosci 5: 2539–2544

    Google Scholar 

  • Chipkin RE, Latranyi MB (1987) Similarity of clozapine and SCH 23390 in reserpinized rats suggests a common mechanism of action. Eur J Pharmacol 136: 371–375

    Google Scholar 

  • Choudhary MS, Craigo S, Roth BL (1992) Identification of receptor domains that modify ligand binding to 5-hydroxytryptamine2 and 5-hydroxytryptamine1c serotonin receptors. Mol Pharmacol 42: 627–633

    Google Scholar 

  • Chouinard G, Jones B, Remington G, Bloom D, Addington D, MacEwan GW, Labelle A, Beauclair L, Arnott W (1993) A Canadian multicenter placebo-controlled study of fixed doses of risperidone and haloperidol in the treatment of chronic schizophrenic patients. J Clin Psychopharmacol 13: 25–40

    Google Scholar 

  • Christensen AV, Arnt J, Hyttel J, Larsen JJ, Svendsen O (1984) Pharmacological effects of a specific dopamine D-1 antagonist SCH 23390 in comparison with neuroleptics. Life Sci 34: 1529–1540

    Google Scholar 

  • Claus A, Bollen J, De Cuyer H, Eneman M, Malfroid M, Peuskens J, Heylen S (1992) Risperidone versus haloperidol in the treatment of chronic schizophrenic inpatients: a multicentre double-blind comparative study. Acta Psychiatr Scand 85: 295–305

    Google Scholar 

  • Cohen BM, Lipinski JF (1986) In vivo potencies of antipsychotic drugs in blocking alpha 1 noradrenergic and dopamine D2 receptors: implications for drug mechanisms of action. Life Sci 39: 2571–2580

    Google Scholar 

  • Cohen BM, Keck PE, Satlin A, Cole JO (1991) Prevalence and severity of akathisia in patients on clozapine. Biol Psychiatry 29: 1215–1219

    Google Scholar 

  • Conley RR, Schulz SC, Baker RW, Collins JF, Bell JA (1988) Clozapine efficacy in schizophrenic nonresponders. Psychopharmacol Bull 24: 269–274

    Google Scholar 

  • Conley R, Wong D, Tamminga C (1993) Striatal receptor occupancy with clozapine versus haloperidol in schizophrenia using pet with 11C-NMSP. Soc Neurosci Abstr 19: 857

    Google Scholar 

  • Costall B, Naylor RJ (1975) Detection of the neuroleptic properties of clozapine, sulpiride and thioridazine. Psychopharmacologia 43: 69–74

    Google Scholar 

  • Costall B, Naylor RJ (1976a) A comparison of the abilities of typical neuroleptic agents and of thioridazine, clozapine, sulpiride and metoclopramide to antagonise the hyperactivity induced by dopamine applied intracerebrally to areas of the extrapyramidal and mesolimbic systems. Eur J Pharmacol 40: 9–19

    Google Scholar 

  • Costall B, Naylor RJ (1976b) Antagonism of the hyperactivity induced by dopamine applied intracerebrally to the nucleus accumbens septi by typical neuroleptics and by clozapine, sulpiride and thioridazine. Eur J Pharmacol 35: 161–168

    Google Scholar 

  • Costall B, Fortune DH, Naylor RJ, Mardsen CD, Pycock C (1975) Serotonergic involvement with neuroleptic catalepsy. Neuropharmacology 14: 859–868

    Google Scholar 

  • Coward D, Dixon K, Enz A, Shearman G, Urwyler S, White T, Karobath M (1989) Partial brain dopamine D2 receptor agonists in the treatment of schizophrenia. Psychopharmacol Bull 25: 393–397

    Google Scholar 

  • Crow TJ, Johnstone EC, Deakin JF, Longden A (1976) Dopamine and schizophrenia. Lancet 2: 563–566

    Google Scholar 

  • Csernansky JG, Wrona CT, Bardgett ME, Early TS, Newcomer JW (1993) Subcortical dopamine and serotonin turnover during acute and subchronic administration of typical and atypical neuroleptics. Psychopharmacology 110: 145–151

    Google Scholar 

  • Daly DA, Moghaddam B (1993) Actions of clozapine and haloperidol on the extracellular levels of excitatory amino acids in the prefrontal cortex and striatum of conscious rats. Neurosci Lett 152: 61–64

    Google Scholar 

  • Davidson M, Kahn RS, Stern RG, Hirschowitz J, Apter S, Knott P, Davis KL (1993) Treatment with clozapine and its effect on plasma homovanillic acid and norepinephrine concentrations in schizophrenia. Psychiatry Res 46: 151–163

    Google Scholar 

  • Delini-Stula A, Berdah-Tordjman D, Neumann N (1992) Partial benzodiazepine agonists in schizophrenia: expectations and present clinical findings. Clin Neuropharmacol 15 [Suppl 1 Pt A]: 405A-406A

    Google Scholar 

  • Den Boer JA, Ravelli DP, Huisman J, Ohrvik J, Verhoeven WM, Westenberg HG (1990) Double blind comparative study of remoxipride and haloperidol in acute schizophrenic patients. Psychopharmacology 102: 76–84

    Google Scholar 

  • Deo R, Soni S, Rastogi SC, Levine S, Plant I, Edwards JG, Mitchell M, Chanas A (1990) Remoxipride and haloperidol in the acute phase of schizophrenia: a double-blind comparison. Acta Psychiatr Scand Suppl 358: 120–124

    Google Scholar 

  • Deutch AY (1994) Identification of the neural systems subserving the actions of clozapine: clues from immediate-early gene expression. J Clin Psychiatry 55 [9, suppl B]: 37–42

    Google Scholar 

  • Deutch AY, Moghaddam B, Innis RB, Krystal JH, Aghajanian GK, Bunney BS, Charney DS (1991) Mechanisms of action of atypical antipsychotic drugs. Implications for novel therapeutic strategies for schizophrenia. Schizophr Res 4: 121–156

    Google Scholar 

  • Deutch AY, Bourdelais AJ, Zahm DS (1993) The nucleus accumbens core and shell: accumbal compartments and their functional attributes. In: Kalivas PW, Barnes CD (eds) Limbic circuits and neuropsychiatry. CRC Press, Boca Raton, pp 45–88

    Google Scholar 

  • Dewey SL, Smith GS, Logan J, Alexoff D, Ding YS, King P, Papas N, Brodie JD, Ashby CR (1995) Serotonergic modulation of striatal dopamine measured with positron emission tomography (PET) and in vivo microdialysis. J Neurosci 15: 821–829

    Google Scholar 

  • Diaz J, Levesque D, Griffon N, Lammers CH, Martres MP, Sokoloff P, Schwartz JC (1994) Opposing roles for dopamine D-2 and D-3 receptors on neurotensin mRNA expression in nucleus accumbens. Eur J Neurosci 6: 1384–1387

    Google Scholar 

  • Domeney AM, Arnt J, Costall B, Naylor RJ, Sanchez C, Smith AG (1994) Effect of sertindole on raised mesolimbic dopaminergic activity in the rat. Drug Dev Res 31: 175–185

    Google Scholar 

  • Drago J, Gerfen CR, Lachowicz JE, Steiner H, Hollon TR, Love PE, Ooi GT, Grinberg A, Lee EJ, Huang SP et al. (1994) Altered striatal function in a mutant mouse lacking D1A dopamine receptors. Proc Natl Acad Sci USA 91: 12564–12568

    Google Scholar 

  • Drescher K, Hetey L (1988) Influence of antipsychotics and serotonin antagonists on presynaptic receptors modulating the release of serotonin in synaptosomes of the nucleus accumbens of rats. Neuropharmacology 27: 31–36

    Google Scholar 

  • Drew KL, O'Connor WT, Kehr J, Ungerstedt U (1990) Regional specific effects of clozapine and haloperidol on GABA and dopamine release in rat basal ganglia. Eur J Pharmacol 187: 385–397

    Google Scholar 

  • Duinkerke SJ, Botter PA, Jansen AA, van Dongen PA, van Haaften AJ, Boom AJ, van Laarhoven JH, Busard HL (1993) Ritanserin, a selective 5-HT2/1C antagonist, and negative symptoms in schizophrenia. A placebo-controlled double-blind trial. Br J Psychiatry 163: 451–455

    Google Scholar 

  • Duval F, Mokrani MC, Macher JP, Crocq MA, Castro JO, Bailey P, Lataste X (1993) Neuroendocrine profile of SDZ HDC-912 and OPC-4392, 2 new atypical antipsychotic drugs, in schizophrenic patients. Psychopharmacology 110: 177–180

    Google Scholar 

  • Edwards E, Ashby CR Jr, Wang RY (1991) The effect of typical and atypical antipsychotic drugs on the stimulation of phosphoinositide hydrolysis produced by the 5-HT3 receptor agonist 2-methyl-serotonin. Brain Res 545: 276–278

    Google Scholar 

  • Egan MF, Karoum F, Wyatt RJ (1991) Effects of acute and chronic clozapine and haloperidol administration on 3-methoxytyramine accumulation in rat prefrontal cortex, nucleus accumbens and striatum. Eur J Pharmacol 199: 191–199

    Google Scholar 

  • Egan MF, Hurd Y, Hyde TM, Weinberger DR, Wyatt RJ, Kleinman JE (1994) Alterations in mRNA levels of D2 receptors and neuropeptides in striatonigral and striatopallidal neurons of rats with neuroleptic-induced dyskinesias. Synapse 18: 178–189

    Google Scholar 

  • Ellenbroek BA, Prinssen EPM, Cools AR (1994) The role of serotonin receptor subtypes in the behavioural effects of neuroleptic drugs — a paw test study in rats. Eur J Neurosci 6: 1–8

    Google Scholar 

  • Esposito E, Pagannone S, Prisco S (1993) Serotonin-dopamine interaction in the rat ventral tegmental area: an electrophysiological study in vivo. Soc Neurosci Abstr 19: 1372

    Google Scholar 

  • Fabre LF, Arvanitis L, the Seroquel Study Group (1993) A multicenter, open, pilot trial of ICI 204,636 in hospitalized patients with acute psychotic symptomatology. Presented at the ACNP Annual Meeting, San Juan, PR

  • Factor SA, Brown D, Molho ES, Podskalny GD (1994) Clozapine — a 2 year open trial in Parkinson's disease patients with psychosis. Neurology 44: 544–546

    Google Scholar 

  • Farde L (1992) Selective D1- and D2-dopamine receptor blockade both induces akathisia in humans — a PET study with [11C]SCH 23390 and [11C]raclopride. Psychopharmacology 107: 23–29

    Google Scholar 

  • Farde L, Nordstrom AL (1992) PET analysis indicates atypical central dopamine receptor occupancy in clozapine-treated patients. Br J Psychiatry Suppl 17: 30–33

    Google Scholar 

  • Farde L, Wiesel F-A, Nordstrom A-L, Sedvall G (1989) D1 and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology 99: S28-S31

    Google Scholar 

  • Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 49:538–544

    Google Scholar 

  • Farde L, Nyberg S, Nordstrom A-L, Halldin C, Sedvall G (1993) Dopamine and serotonin receptor occupancy examined by PET in antipsychotic drug treated patients. Presented at the American College of Neuropsychopharmacology 32nd Annual Meeting, Honolulu, Hawaii

  • Fibiger HC, Robertson GS (1992) Neuroleptic-induced c-fos expression in the forebrain: contrasting effects of typical and atypical neuroleptics. Presented at the ACNP Annual Meeting, San Juan, PR

  • Fink H, Morgenstern R, Oelssner W (1984) Clozapine — a serotonin antagonist? Pharmacol Biochem Behav 20:513–517

    Google Scholar 

  • Fink-Jensen A, Hansen L, Nielsen PG, Nielsen EB (1993) Clozapine, risperidone and sertindole preferentially increase interstitial DOPAC levels in the rat prefrontal cortex relative to dorsolateral striatum. Soc Neurosci Abstr 19:81

    Google Scholar 

  • Fink-Jensen A, Kristensen P (1994) Effects of typical and atypical neuroleptics on Fos protein expression in the rat forebrain. Neurosci Lett 182:115–118

    Google Scholar 

  • Fischman LG (1983) Dreams, hallucinogenic drug states, and schizophrenia: a psychological and biological comparison. Schizophr Bull 9:73–94

    Google Scholar 

  • Fishman RHB, Feigenbaum JJ, Yanai J, Klawans HL (1983) The relative importance of dopamine and norepinephrine in mediating locomotor activity. Prog Neurobiol 20:55–88

    Google Scholar 

  • Fitzgerald LW, Deutch AY, Gasic G, Heinemann SF, Nestler EJ (1995) Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs. J Neurosci 15 [3 Pt 2]: 2453–2461

    Google Scholar 

  • Flamez A, Debacker JP, Wilczak N, Vauquelin G, Dekeyser J (1994) [3H]clozapine is not a suitable radioligand for the labelling of D-4 dopamine receptors in postmortem human brain. Neurosci Lett 175:17–20

    Google Scholar 

  • Fog R (1975) Neuroleptic action of clozapine injected into various brain are as in rats. Int Pharmacopsychiatry 10:89–93

    Google Scholar 

  • Freedman R, Kirch D, Bell J, Adler LE, Pecevich M, Pachtman E, Denver P (1982) Clonidine treatment of schizophrenia: double-blind comparison to placebo and neuroleptic drugs. Acta Psychiatr Scand 65:35–45

    Google Scholar 

  • Friedman A (1978) [Pizotifen (Sandomigran) used in the treatment of parkinsonian tremor (preliminary communication)] Neurol Neurochir Pol 12:263–267

    Google Scholar 

  • Friedman E, Gianutsos G, Kuster J (1983) Chronic fluphenazine and clozapine elicit opposite changes in brain muscarinic receptor binding: implications for understanding tardive dyskinesia. J Pharmacol Exp Ther 226:7–12

    Google Scholar 

  • Friedman L, Knutson L, Shurell M, Meltzer HY (1991) Prefrontal sulcal prominence is inversely related to response to clozapine in schizophrenia. Biol Psychiatry 29:865–877

    Google Scholar 

  • Fuxe K, Eneroth P, Gustafsson JA, Lofstrom A, Skett P (1977) Dopamine in the nucleus accumbens: preferential increase of DA turnover by rat prolactin. Brain Res 122:177–182

    Google Scholar 

  • Gainetdinov RR, Grekhova TV, Sotnikova TD, Rayevsky KS (1994) Dopamine D-2 and D-3 receptor preferring antagonists differentially affect striatal dopamine release and metabolism in conscious rats. Eur J Pharmacol 261:327–331

    Google Scholar 

  • Gallager DW, Aghajanian GK (1976) Effect of antipsychotic drugs on the firing of dorsal raphe cells. I. Role of adrenergic system. Eur J Pharmacol 39:341–355

    Google Scholar 

  • Gallipoli PZ, Clark J, Amara S, Deutch AY (1993) Haloperidol and clozapine differentially regulate GABA transporter mRNAs in the prefrontal cortex of the rat. Soc Neurosci Abstr 19:1214

    Google Scholar 

  • Gardner EL (1992) Neuroanatomical specificity of action of the atypical antipsychotics. In: Lindenmayer JP, Kay SR (eds) New biological vistas on schizophrenia. Brunner/Mazel, New York, pp 158–181

    Google Scholar 

  • Gardner EL, Walker LS, Paredes W (1993) Clozapine's functional mesolimbic selectivity is not duplicated by the addition of anticholinergic action to haloperidol — a brain stimulation study in the rat. Psychopharmacology 110:119–124

    Google Scholar 

  • Gattaz WF, Gattaz D, Beckmann H (1982) Glutamate in schizophrenics and healthy controls. Arch Psychiatr Nervenkr 231:221–225

    Google Scholar 

  • Gattaz WF, Schummer B, Behrens S (1994) Effects of zotepine, haloperidol and clozapine on MK-801-induced stereotypy and locomotion in rats. J Neural Transm [Gen Sect] 96:227–232

    Google Scholar 

  • Gelders Y, VandenBussche G, Reyntjens A, Janssen P (1986) Serotonin-S2 receptor blockers in the treatment of chronic schizophrenia. Clin Neuropharmacol 9:325–327

    Google Scholar 

  • Gellman RL, Aghajanian GK (1994) Serotonin(2) receptor-mediated excitation of interneurons in piriform cortex — antagonism by atypical antipsychotic drugs. Neuroscience 58:515–525

    Google Scholar 

  • Gerbaldo H, Demisch L, Lehmann CO, Bochnik J (1988) The effect of OPC-4392, a partial dopamine receptor agonist on negative symptoms: results of an open study. Pharmacopsychiatry 21:387–388

    Google Scholar 

  • Gerfen CR, Engbar TM (1992) Molecular neuroanatomic mechanisms of Parkinson's disease: a proposed therapeutic approach. Neurol Clin 10:435–449

    Google Scholar 

  • Gerlach J, Casey DE (1990) Remoxipride, a new selective D2 antagonist, and haloperidol in cebus monkeys. Prog Neuropsychopharmacol Biol Psychiatry 14:103–112

    Google Scholar 

  • Gerlach J, Hansen L (1993) Effect of chronic treatment with NNC 756, a new D-1 receptor antagonist, or raclopride, a D-2 receptorantagonist, in drug-naive Cebus monkeys: dystonia, dyskinesia and D-1/D-2 supersensitivity. J Psychopharmacol 7:355–364

    Google Scholar 

  • Gervais J, Rouillard C (1993) Electrophysiological responses of mesencephalic dopamine neurons to dorsal raphe stimulation in 5-HT-depleted rats. Soc Neurosci Abstr 19:1372

    Google Scholar 

  • Gianutsos G, Moore KE (1977) Dopaminergic supersensitivity in striatum and olfactory tubercle following chronic administration of haloperidol or clozapine. Life Sci 20 [9]:1585–1591

    Google Scholar 

  • Glatt CE, Snowman AM, Sibley DR, Snyder SH (1995) Clozapine: Selective labeling of sites resembling 5HT6 serotonin receptors may reflect psychoactive profile. Mol Med 1:398–406

    Google Scholar 

  • Gnegy ME, Lucchelli A, Costa E (1977) Correlation between drug-induced supersensitivity of dopamine dependent striatal mechanisms and the increase in striatal content of the Ca2+ regulated protein activator of cAMP phosphodiesterase. Naunyn Schmiedebergs Arch Pharmacol 301:121–127

    Google Scholar 

  • Goldberg TE, Weinberger DR (1994) The effects of clozapine on neurocognition: an overview. J Clin Psychiatry 55 [Suppl B]:88–90

    Google Scholar 

  • Goldberg TE, Gold JM, Weinberger DR (1993a) A comparison of the effects of clozapine and haloperidol on the cognition of patients with schizophrenia. Soc Neurosci Abstr 19:856

    Google Scholar 

  • Goldberg TE, Greenberg RD, Griffin SJ, Gold JM, Kleinman JE, Pickar D, Schulz SC, Weinberger DR (1993b) The effect of clozapine on cognition and psychiatric symptoms in patients with schizophrenia. Br J Psychiatry 162:43–48

    Google Scholar 

  • Goldman-Rakic PS, Lidow MS, Gallager DW (1990) Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 10:2125–2138

    Google Scholar 

  • Goldstein JM, Litwin LC (1988) Spontaneous activity of A9 and A10 dopamine neurons after acute and chronic administration of the selective dopamine D-1 receptor antagonist SCH 23390. Eur J Pharmacol 155:175–180

    Google Scholar 

  • Goldstein JM, Litwin LC, Sutton EB, Malick JB (1993) Seroquel: electrophysiological profile of a potential atypical antipsychotic. Psychopharmacology 112:293–298

    Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Google Scholar 

  • Grace AA (1992) The depolarization block hypothesis of neuroleptic action: implications for the etiology and treatment of schizophrenia. J Neural Transm Suppl 36:91–131

    Google Scholar 

  • Graham SR, Kokkinidis L (1993) Clozapine inhibits limbic system kindling: implications for antipsychotic action. Brain Res Bull 30:597–605

    Google Scholar 

  • Green AI, Alam MY, Sobieraj JT, Pappalardo KM, Waternaux C, Salzman C, Schatzberg AF, Schildkraut JJ (1993) Clozapine response and plasma catecholamines and their metabolites. Psychiatry Res 46:139–49

    Google Scholar 

  • Greene P, Cote L, Fahn S (1993) Treatment of drug-induced psychosis in Parkinson's disease with clozapine. Adv Neurol 60:703–706

    Google Scholar 

  • Groppetti A, Parenti M, Galli CL, Bugatti A, Cattabeni F, Di Giulio AM, Racagni G (1978) 3-Methoxytyramine and different neuroleptics: dissociation from HVA and DOPAC. Life Sci 23:1763–1768

    Google Scholar 

  • Gudelsky GA, Nash JF, Berry SA, Meltzer HY (1989) Basic biology of clozapine: electrophysiological and neuroendocrinological studies. Psychopharmacology 99 [Suppl]: S13-S17

    Google Scholar 

  • Guinetdinov RR, Bogdanov MB, Kudrin VS, Rayevsky KS (1994) Remoxipride and raclopride differ from metoclopramide by their effects on striatal dopamine release and biosynthesis in rats. Neuropharmacology 33:215–219

    Google Scholar 

  • Gumulka W, Kostowski W, Czlonkowski A (1973) Role of 5-HT in the action of some drugs affecting extrapyramidal system. Pharmacology 10:363–372

    Google Scholar 

  • Gunne LM, Andren PE (1993) An animal model for coexisting tardive dyskinesia and tardive Parkinsonism — a glutamate hypothesis for tardive dyskinesia. Clin Neuropharmacol 16:90–95

    Google Scholar 

  • Guo N, Robertson GS, Fibiger HC (1992) Scopolamine attenuates haloperidol-induced c-fos expression in the striatum. Brain Res 588:164–167

    Google Scholar 

  • Gupta SK, Mishra RK (1992) Effects of chronic treatment of haloperidol and clozapine on levels of G-protein subunits in rat striatum. J Mol Neurosci 3:197–201

    Google Scholar 

  • Gygi SP, Gibb JW, Hanson GR (1994) Differential effects of antipsychotic and psychotomimetic drugs on neurotensin systems of discrete extrapyramidal and limbic regions. J Pharmacol Exp Ther 270:192–197

    Google Scholar 

  • Hagger C, Buckley P, Kenny JT, Friedman L, Ubogy D, Meltzer HY (1993) Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biol Psychiatry 34:702–712

    Google Scholar 

  • Halperin R, Guerin JJ Jr, Davis KL (1989) Regional differences in the induction of behavioral supersensitivity by prolonged treatment with atypical neuroleptics. Psychopharmacology 98:386–391

    Google Scholar 

  • Hand TH, Hu XT, Wang RY (1987a) Differential effects of acute clozapine and haloperidol on the activity of ventral tegmental (A10) and nigrostriatal (A9) dopamine neurons. Brain Res 415:257–269

    Google Scholar 

  • Hand TH, Kasser RJ, Wang RY (1987b) Effects of acute thioridazine, metoclopramide and SCH 23390 on the basal activity of A9 and A10 dopamine cells. Eur J Pharmacol 137:251–255

    Google Scholar 

  • Hashimoto T, Kitamura N, Kajimoto Y, Shirai Y, Shirakawa O, Mita T, Nishino N, Tanaka C (1993) Differential changes in serotonin 5-HT(1A) and 5-HT(2) receptor binding in patients with chronic schizophrenia. Psychopharmacology 112 [1 Suppl]:S35-S39

    Google Scholar 

  • Hauber W (1993) Clozapine improves dizocilpine-induced delayed alternation impairment in rats. J Neural Transm [Gen Sect] 94:223–233

    Google Scholar 

  • Heal DJ, Czudek C, Buckett WR (1994) Common Profile of D1 receptor antagonists and atypical antipsychotic drugs revealed by analysis of dopamine turnover. Prog Neuropsychophormocol Biol Psychiatry 18:803–821

    Google Scholar 

  • Heilig M, Engel JA, Soderpalm B (1993) In vivo antisense blockade of c-fos-expression in the nucleus accumbens prevents the locomotor stimulant action of systemic cocaine in rats. Soc Neurosci Abstr 19:1857

    Google Scholar 

  • Hernandez L, Hoebel BG (1989) Haloperidol given chronically decreases basal dopamine in the prefrontal cortex more than the striatum or nucleus accumbens as simultaneously measured by microdialysis. Brain Res Bull 22:763–769

    Google Scholar 

  • Hicks PB (1990) The effect of serotonergic agents on haloperidol-induced catalepsy. Life Sci 47:1609–1615

    Google Scholar 

  • Hietala J, Lappalainen J, Koulu M, Syvalahti E (1990) Dopamine D1 receptor antagonism in schizophrenia: is there reduced risk of extrapyramidal side-effects? Trends Pharmacol Sci 11:406–410

    Google Scholar 

  • Hietala J, Koulu M, Kuoppamaki M, Lappalainen J, Syvalahti E (1992) Chronic clozapine treatment down-regulates serotonin 5-HT-1c receptors in rat brain. Prog Neuropsychopharmacol Biol Psychiatry 16:727–732

    Google Scholar 

  • Hildebrand J, Delecluse F (1987) Effect of ritanserin, a selective serotonin-S2 antagonist, on parkinsonian rest tremor. Curr Ther Res 41:298–300

    Google Scholar 

  • Hiroi N, Graybiel AM (1993) Typical and atypical neuroleptics stimulate contrasting patterns of neuropeptide and Fos/FRA expression in the striatum. Soc Neurosci Abstr 19:129

    Google Scholar 

  • Hjorth S, Carlsson A, Wikstrom H, Lindberg P, Sanchez D, Hacksell U, Arvidsson LE, Svensson U, Nilsson JL (1981) 3-PPP, a new centrally acting DA-receptor agonist with selectivity for autoreceptors. Life Sci 28:1225–1238

    Google Scholar 

  • Hoffman DC (1992) Typical and atypical neuroleptics antagonize MK-801-induced locomotion and stereotypy in rats. J Neural Transm [Gen Sect] 89:1–10

    Google Scholar 

  • Hollerman JR, Abercrombie ED, Grace AA (1992) Electrophysiological, biochemical, and behavioral studies of acute haloperidol-induced depolarization block of nigral dopamine neurons. Neuroscience 47:589–601

    Google Scholar 

  • Hommer DW, Zahn TP, Pickar D, van Kammen DP (1984) Prazosin, a selective alpha1-noradrenergic receptor antagonist, has no effect on symptoms but increases autonomic arousal in schizophrenic patients. Psychiatry Res 11:193–204

    Google Scholar 

  • Hornykiewicz O (1982) Brain catecholamines in schizophrenia — a good case for noradrenaline. Nature 299:484–486

    Google Scholar 

  • Hoyberg OJ, Fensbo C, Remvig J, Lingjaerde O, Slothnielsen M, Salvesen I (1993) Risperidone versus perphenazine in the treatment of chronic schizophrenic patients with acute exacerbations. Acta Psychiatr Scand 88:395–402

    Google Scholar 

  • Hoyer D, Gozlan H, Bolanos F, Schechter LE, Hamon M (1989) Interaction of psychotropic drugs with central 5-HT3 recognition sites: fact or artifact? Eur J Pharmacol 171:137–139

    Google Scholar 

  • Huff RM, Adams RN (1980) Dopamine release in n. accumbens and striatum by clozapine: simultaneous monitoring by in vivo electrochemistry. Neuropharmacology 19:587–590

    Google Scholar 

  • Hyttel J, Larsen J-J, Christensen AV, Arnt J (1985) Receptor-binding profiles of neuroleptics. In: Casey DE, Chase TN, Christensen AV, Gerlach J (eds) Dyskinesia — research and treatment. Springer, Berlin, pp 9–18

    Google Scholar 

  • Ichikawa J, Meltzer HY (1990a) The effect of chronic clozapine and haloperidol on basal dopamine release and metabolism in rat striatum and nucleus accumbens studied by in vivo microdialysis. Eur J Pharmacol 176:371–374

    Google Scholar 

  • Ichikawa J, Meltzer HY (1990b) Apomorphine does not reverse reduced basal dopamine release in rat striatum and nucleus accumbens after chronic haloperidol treatment. Brain Res 507:138–142

    Google Scholar 

  • Ikeguchi K, Kuroda A (1995) Mianserin treatment of patients with psychosis induced by antiparkinsonian drugs. Eur Arch Psychiatr Clin Neurosci 244:320–324

    Google Scholar 

  • Imperato A, Angelucci L (1989) The effects of clozapine and fluperlapine on the in vivo release and metabolism of dopamine in the striatum and in the prefrontal cortex of freely moving rats. Psychopharmacol Bull 25:383–389

    Google Scholar 

  • Invernizzi RW, Cervo L, Samanin R (1988) 8-Hydroxy-2-(di-n-propylamino) tetralin, a selective serotonin1A receptor agonist, blocks haloperidol-induced catalepsy by an action on raphe nuclei medianus and dorsalis. Neuropharmacology 27:515–518

    Google Scholar 

  • Invernizzi R, Pozzi L, Samanin R (1995a) Further studies on the effects of chronic clozapine on regional extracellular dopamine levels in the brain of conscious rats. Brain Res 670:165–168

    Google Scholar 

  • Invernizzi R, Pozzi L, Samanin R (1995b) Selective reduction of extracellular dopamine in the rat nucleus accumbens following chronic treatment with DAU 6215, a 5-HT3 receptor antagonist. Neuropharmacology 34:211–215

    Google Scholar 

  • Iversen LL, Horn AS, Miller RJ (1975) Structure-activity relationships for agonist and antagonist drugs at pre- and postsynaptic dopamine receptor sites in rat brain. In: Usdin E, Bunney WE (eds) Pre- and postsynaptic receptors. Marcel Dekker, New York, pp 207–243

    Google Scholar 

  • Iversen SD (1992) Glycine NMDA antagonists: novel antipsychotic drugs? Presented at American College of Neuropsychopharmacology, 31st Annual Meeting, San Juan, PR

  • Jaber M, Tison F, Fournier MC, Bloch B (1994) Differential influence of haloperidol and sulpiride on dopamine receptors and peptide messenger RNA Levels in the rat striatum and pituitary. Mol Brain Res 23:14–20

    Google Scholar 

  • Janowsky A, Neve KA, Kinzie JM, Taylor B, de Paulis T, Belknap JK (1992) Extrastriatal dopamine D2 receptors: distribution, pharmacological characterization and region-specific regulation by clozapine. J Pharmacol Exp Ther 261:1282–1290

    Google Scholar 

  • Janssen PAJ, Awouters FHL (1994) Is it possible to predict the clinical effects of neuroleptics from animal data? 5. From haloperidol and pipamperone to risperidone. Arzneimittelforschung 44-1:269–277

    Google Scholar 

  • Janssen PAJ, Niemegeers CJC, Jageneau AHM (1960) Apomorphine-antagonism in rats. Arzneimittelforschung 10:1003–1005

    Google Scholar 

  • Janssen PAJ, Niemegeers CJE, Schellekens KHL (1965) Is it possible to predict the clinical effects of neuroleptic drugs (major tranquilizers) from animal data? Arzneimittelforschung 15:104–117

    Google Scholar 

  • Janssen PAJ, Van Bever WFM (1978) Structure-activity relationships of the butyrophenones and diphenylbutylpiperidines. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, volume 10. Plenum Press, New York, pp 1–35

    Google Scholar 

  • Janssen PAJ, Niemegeers CJ, Awouters F, Schellekens KH, Megens AA, Meert TF (1988) Pharmacology of risperidone (R 64, 766), a new antipsychotic with serotonin-S2 and dopamine-D2 antagonistic properties. J Pharmacol Exp Ther 244:685–693

    Google Scholar 

  • Jaskiw GE, Hussain G, Meltzer HY (1993) Frontal cortex lesions modify the cataleptogenic properties of haloperidol but not of clozapine. Biol Psychiatry 34:188–190

    Google Scholar 

  • Javitt DC, Zukin SR (1990) The role of excitatory amino acids in neuropsychiatric illness. J Neuropsychiatr Clin Neurosci 2:44–52

    Google Scholar 

  • Javitt DC, Zylberman I, Zukin SR, Heresco-Levy U, Lindenmayer JP (1994) Amelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatry 151:1234–1236

    Google Scholar 

  • Jenner P, Rupniak NM, Marsden CD (1985) Differential alteration of striatal D-1 and D-2 receptors induced by the long-term administration of haloperidol, sulpiride or clozapine to rats. Psychopharmacology 2:174–181

    Google Scholar 

  • Jerlicz M, Kostowski W, Bidzinski A, Hauptmann M (1978) Effects of lesions in the ventral noradrenergic bundle on behavior and response to psychotropic drugs in rats. Pharmacol Biochem Behav 9:721–724

    Google Scholar 

  • Johnson SW, Seutin V, North RA (1992) Burst firing in dopamine neurons induced byN-methyl-d-aspartate: role of electrogenic sodium pump. Science 258:665–667

    Google Scholar 

  • Jolicoeur FB, Gagne MA, Rivest R, Drumheller A, Stpierre S (1993) Atypical neuroleptic-like behavioral effects of neurotensin. Brain Res Bull 32:487–491

    Google Scholar 

  • Kafetzopoulos E (1986) Effects of amphetamine and apomorphine on locomotor activity after kainic acid lesion of the nucleus accumbens septi in the rat. Psychopharmacology 88:271–274

    Google Scholar 

  • Kahn RS, Davidson M, Knott P, Stern RG, Apter S, Davis KL (1993a) Effect of neuroleptic medication on cerebrospinal fluid monoamine metabolite concentrations in schizophrenia. Arch Gen Psychiatry 50:599–605

    Google Scholar 

  • Kahn RS, Siever L, Davidson M, Greenwald C, Moore C (1993b) Haloperidol and clozapine treatment and their effect onm-chlorophenylpiperazine-mediated responses in schizophrenia — implications for the mechanism of action of clozapine. Psychopharmacology 112 [1 Suppl]:S90-S94

    Google Scholar 

  • Kahn RS, Davidson M, Siever LJ, Sevy S, Davis KL (1994) Clozapine treatment and its effect on neuroendocrine responses induced by the serotonin agonist,m-chlorophenylpiperazine. Biol Psychiatry 35:909–912

    Google Scholar 

  • Kalivas PW, Duffy P (1989) Similar effects of daily cocaine and stress on mesocorticolimbic dopamine neurotransmission in the rat. Biol Psychiatry 25:913–928

    Google Scholar 

  • Kalivas PW, Richardson-Carlson R, Van-Orden G (1986) Cross-sensitization between foot shock stress and enkephalin-induced motor activity. Biol Psychiatry 21:939–950

    Google Scholar 

  • Kane J, Honigfeld G, Singer J, Meltzer H, the Clozaril Collaborative Study Group (1988) Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine. Arch Gen Psychiatry 45:789–796

    Google Scholar 

  • Karbe H, Wienhard K, Hamacher K, Huber M, Herholz K, Coenen HH, Stocklin G, Lovenich A, Heiss WD (1991) Positron emission tomography with [18F] methylspiperone demonstrates D2 dopamine receptor binding differences of clozapine and haloperidol. J Neural Transm [Gen Sect] 86:163–173

    Google Scholar 

  • Karler R, Calder LD, Thai LH, Bedingfield JB (1995) The dopaminergic, glutamatergic, GABAergic bases for the action of amphetamine and cocaine. Brain Res 671:100–104

    Google Scholar 

  • Karlsson P, Smith L, Farde L, Harnryd C, Wiesel FA, Sedvall GC (1994) Lack of apparent antipsychotic effect of the dopamine D1-receptor antagonist SCH 39166 in schizophrenia. Neuropsychopharmacology 10 [3S/Part 2]:32S

  • Karoum F, Egan MF (1992) Dopamine release and metabolism in the rat frontal cortex, nucleus accumbens, and striatum: a comparison of acute clozapine and haloperidol. Br J Pharmacol 105:703–707

    Google Scholar 

  • Karoum F, Chrapusta SJ, Egan MF (1994) 3-Methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: Reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. J Neurochem 63:972–979

    Google Scholar 

  • Kathmann M, Schlicker E, Gothert M (1994) Intermediate affinity and potency of clozapine and low affinity of other neuroleptics and of antidepressants at H-3 receptors. Psychopharmacology 116:464–468

    Google Scholar 

  • Keller HH, Bartholini G, Pletscher A (1973) Increase of 3-methoxy-4-hydroxyphenylethylene glycol in rat brain by neuroleptic drugs. Eur J Pharmacol 23:183–186

    Google Scholar 

  • Kelly PH, Iversen SD (1976) Selective 60HDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats. Eur J Pharmacol 40:45–56

    Google Scholar 

  • Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94:507–522

    Google Scholar 

  • Kilts CD, Anderson CM, Bissette G, Ely TD, Nemeroff CB (1988) Differential effects of antipsychotic drugs on the neurotensin concentration of discrete rat brain nuclei. Biochem Pharmacol 37:1547–1554

    Google Scholar 

  • Kim JS, Claus D, Kornhuber HH (1983) Cerebral glutamate, neuroleptic drugs and schizophrenia: increase of cerebrospinal fluid glutamate levels and decrease of striate body glutamate levels following sulpiride treatment in rats. Eur Neurol 22:367–370

    Google Scholar 

  • Kinkead B, Owens MJ, Nemeroff CB (1993) The effects of sertindole on regional CNS neurotensin concentrations in the rat brain. Soc Neurosci Abstr 19:856

    Google Scholar 

  • Kinon BJ (1993) The influence of extrastriatal dopamine metabolism on haloperidol-induced catalepsy. Biol Psychiatry 33:132A

    Google Scholar 

  • Knable MB, Hyde TM, Egan MF, Tosayali M, Wyatt RJ, Kleinman JE (1994) Quantitative autoradiography of striatal dopamine D1, D2 and re-uptake sites in rats with vacuous chewing movements. Brain Res 646:217–222

    Google Scholar 

  • Kobayashi RM, Fields JZ, Hruska RE, Beaumont K, Yamamura HI (1978) Brain neurotransmitter receptors and chronic antipsychotic drug treatment: a model for tardive dyskinesia. In: Usdin E (ed) Animal models in psychiatry. Pergamon Press, New York, pp 405–409

    Google Scholar 

  • Kohler C, Ogren SO, Haglund L, Angeby T (1979) Regional displacement by sulpiride of [3H]spiperone binding in vivo. Biochemical and behavioural evidence for a preferential action of limbic and nigral dopamine receptors. Neurosci Lett 13:51–56

    Google Scholar 

  • Kohler C, Haglund L, Ogren SO, Angeby T (1981) Regional blockade by neuroleptic drugs of in vivo3H-spiperone binding in the rat brain. Relation to blockade of apomorphine induced hyperactivity and stereotypies. J Neural Transm 52:163–173

    Google Scholar 

  • Korsgaard S, Gerlach J, Christensson E (1985) Behavioral aspects of serotonin-dopamine interaction in the monkey. Eur J Pharmacol 118:245–252

    Google Scholar 

  • Korsgaard S, Noring U, Povlsen UJ, Gerlach J (1986) Effects of citalopram, a specific serotonin uptake inhibitor, in tardive dyskinesia and parkinsonism. Clin Neuropharmacol 9:52–57

    Google Scholar 

  • Kostowski W, Gumulka W, Cxlonkowski A (1972) Reduced cataleptogenic effects of some neuroleptics in rats with lesioned midbrain raphe and treated withp-chlorophenylalanine. Brain Res 48:443–446

    Google Scholar 

  • Kretschmer BD, Winterscheid B, Danysz W, Schmidt WJ (1994) Glycine site antagonists abolish dopamine D2 but not D1 receptor mediated catalepsy in rats. J Neural Transm [Gen Sect] 95:123–136

    Google Scholar 

  • Krystal JH, Seibyl JP, Price LH, Woods SW, Heninger GR, Aghajanian GK, Charney DS (1993)m-Chlorophenylpiperazine effects in neuroleptic-free schizophrenic patients. Evidence implicating serotonergic systems in the positive symptoms of schizophrenia. Arch Gen Psychiatry 50:624–635

    Google Scholar 

  • Kubota T (1993) Neuroleptic malignant syndrome induced by nemonapride. Acta Neurol Napoli 15:142–144

    Google Scholar 

  • Kulikov AV, Kozlachkova EY, Popova NK (1992) Activity of tryptophan hydroxylase in brain of hereditary predisposed to catalepsy rats. Pharmacol Biochem Behav 43:999–1003

    Google Scholar 

  • Kulikov AV, Kolpakov VG, Maslova GB, Kozintsev I, Popova NK (1994) Effect of selective 5-HT1A agonists and 5-HT2 antagonists on inherited catalepsy in rats. Psychopharmacology 114:172–174

    Google Scholar 

  • Kulikov AV, Avgustinovich DF, Kolpakov VG, Maslova GB, Popova NK (1995a) 5-HT2A serotonin receptors in the brain of rats and mice hereditarily predisposed to catalepsy. Pharmacol Biochem Behav 50:383–387

    Google Scholar 

  • Kulikov AV, Kozlachkova EY, Kudryavtseva NN, Popova NK (1995b) Correlation between tryptophan hydroxylase activity in the brain and predisposition to pinch-induced catalepsy in mice. Pharmacol Biochem Behav 50:431–435

    Google Scholar 

  • Kuoppamaki M, Seppala T, Syvalahti E, Hietala J (1993) Chronic clozapine treatment decreases 5-hydroxytryptamine1C receptor density in the rat choroid plexus — comparison with haloperidol. J Pharmacol Exp Ther 264:1262–1267

    Google Scholar 

  • Labie C, Saubusse P, Keane PE, Lefur G, Soubrie P (1995) Effects of the alpha receptor ligand SR 31742A on neurotensin biosynthesis in rat basal ganglia. Synapse 19:241–246

    Google Scholar 

  • Lader M (1988) Beta-adrenoceptor antagonists in neuropsychiatry: an update. J Clin Psychiatry 49:213–223

    Google Scholar 

  • Laduron PM, Janssen PF, Leysen JE (1978) Spiperone: a ligand of choice for neuroleptic receptors. 2. Regional distribution and in vivo displacement of neuroleptic drugs. Biochem Pharmacol 27:317–321

    Google Scholar 

  • Lahti RA, Evans DL, Stratman NC, Figur LM (1993) Dopamine-D(4) versus dopamine D(2) receptor selectivity of dopamine receptor antagonists — possible therapeutic implications. Eur J Pharmacol 236:483–486

    Google Scholar 

  • Lai H, Carino MA, Sperry R, Horita A (1980) Effects of thioridazine on apomorphine-elicited stereotypic behavior and motor activity. Pharmacol Biochem Behav 13:397–401

    Google Scholar 

  • Lane RF, Blaha CD (1986) Electrochemistry in vivo: application to CNS pharmacology. Ann NY Acad Sci 473:50–69

    Google Scholar 

  • Lane RF, Blaha CD (1987) Acute thioridazine stimulates mesolimbic but not nigrostratal dopamine release: demonstration by in vivo electrochemistry. Brain Res 408:317–320

    Google Scholar 

  • Lane RF, Blaha CD, Rivet JM (1988) Selective inhibition of mesolimbic dopamine release following chronic administration of clozapine: involvement of alpha 1-noradrenergic receptors demonstrated by in vivo voltammetry. Brain Res 460:398–401

    Google Scholar 

  • Lang A, Vasar E, Soosaar A, Harro J (1992) The involvement of sigma and phencyclidine receptors in the action of antipsychotic drugs. Pharmacol Toxicol 71:132–138

    Google Scholar 

  • Lapierre YD, Nair NP, Chouinard G, Awad AG, Saxena B, Jones B, McClure DJ, Bakish D, Max P, Manchanda R (1990) A controlled dose-ranging study of remoxipride and haloperidol in schizophrenia — a Canadian multicentre trial. Acta Psychiatr Scand Suppl 358:72–77

    Google Scholar 

  • Lappalainen J, Hietala J, Koulu M, Syvalahti E (1990) Neurochemical effects of chronic co-administration of ritanserin and haloperidol: comparison with clozapine effects. Eur J Pharmacol 190:403–407

    Google Scholar 

  • Laux G, Klieser E, Schroder HG, Dittmann V, Unterweger B, Schubert H, Konig P, Schony HW, Bunse J, Beckmann H (1990) A double-blind multicentre study comparing remoxipride, two and three times daily, with haloperidol in schizophrenia. Acta Psychiatr Scand Suppl 358:125–129

    Google Scholar 

  • Lawrence MS, Redmond DE Jr, Elsworth JD, Taylor JR, Roth RH (1991) The D1 receptor antagonist, SCH 23390, induces signs of parkinsonism in African green monkeys. Life Sci 49:PL229-PL234

    Google Scholar 

  • Le Fur G, Burgevin MC, Malgouris C, Uzan A (1979) Differential effects of typical and atypical neuroleptics on alpha-noradrenergic and dopaminergic post synaptic receptors. Neuropharmacology 18:591–594

    Google Scholar 

  • Lee T, Tang SW (1984) Loxapine and clozapine decrease serotonin (S2) but do not elevate dopamine (D2) receptor numbers in the rat brain. Psychiatry Res 12:277–285

    Google Scholar 

  • Lejeune F, Audinot V, Gobert A, Rivet JM, Spedding M, Millan MJ (1994) Clozapine inhibits serotoninergic transmission by an action at alpha(1)-adrenoceptors not at 5-HT(1A) receptors. Eur J Pharmacol 260:79–83

    Google Scholar 

  • Leslie RA, Moorman JM, Coulson A, Grahame-Smith DG (1993) Serotonin2/1C receptor activation causes a localized expression of the immediate-early gene c-fos in rat brain: evidence for involvement of dorsal raphe nucleus projection fibres. Neuroscience 53 [2]:457–463

    Google Scholar 

  • Lew MF, Waters CH (1993) Clozapine treatment of parkinsonism with psychosis. J Am Geriatr Soc 41:669–671

    Google Scholar 

  • Leysen JE, Van Gompel P, de Chaffoy de Courcelles D, Niemegeers CJ (1987) Opposite regulation of serotonin-S2 and dopamine-D2 receptors in rat brain following chronic receptor blockade. J Recept Res 7:223–239

    Google Scholar 

  • Li D, Simmons RM, Lyengar S (1993) CCKB receptors tonically modulate A10 dopaminergic neurons selectively: neurochemical evaluation of LY288513. Soc Neurosci Abstr 19:1547

    Google Scholar 

  • Lichter JB, Barr CL, Kennedy JL, Van Tol HH, Kidd KK, Livak KJ (1993) A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum Mol Genet 2:767–773

    Google Scholar 

  • Lidow MS, Goldman-Rakic PS (1994) A common action of clozapine, haloperidol, and remoxipride on D-1- and D-2-dopaminergic receptors in the primate cerebral cortex. Proc Natl Acad Sci 91:4353–4356

    Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40:657–671

    Google Scholar 

  • Lidsky TI, Yablonskyalter E, Zuck L, Banerjee SP (1993) Anti-glutamatergic effects of clozapine. Neurosci Lett 163:155–158

    Google Scholar 

  • Lieberman JA (1993) Understanding the mechanism of action of atypical antipsychotic drugs. A review of compounds in use and development. Br J Psychiatry Suppl [22]:7–18

  • Lieberman JA, Alvir JMJ, Woerner M, Degreef G, Bilder RM, Ashtari M, Bogerts B, Mayerhoff DI, Geisler SH, Loebel A, Levy DL, Hinrichsen G, Szymanski SR, Chakos M, Koreen A, Borenstein M, Kane JM (1992) Prospective study of psychobiology in first-episode schizophrenia at Hillside Hospital. Schizophr Bull 18:351–371

    Google Scholar 

  • Lieberman JA, Safferman AZ, Pollack S, Szymanski S, Johns C, Howard A, Kronig M, Bookstein P, Kane JM (1994) Clinical effects of clozapine in chronic schizophrenia: response to treatment and predictors of outcome. Am J Psychiatry 151: 1744–1752

    Google Scholar 

  • Lindstrom LH (1994) Long-term clinical and social outcome studies in schizophrenia in relation to the cognitive and emotional side effects of antipsychotic drugs. Acta Psychiatr Scand 89 [Suppl. 380]: 74–76

    Google Scholar 

  • Lindstrom LH, Wieselgren IM, Struwe G, Kristjansson E, Akselson S, Arthur H, Andersen T, Lindgren S, Norman O, Naimell L (1990) A double-blind comparative multicentre study of remoxipride and haloperidol in schizophrenia. Acta Psychiatr Scand Suppl 358: 130–135

    Google Scholar 

  • Lipska BK, Weinberger DR (1993) Delayed effects of neonatal hippocampal damage on haloperidol-induced catalepsy and apomorphine-induced stereotypic behaviors in the rat. Dev Brain Res 75: 213–222

    Google Scholar 

  • Lipska BK, Jaskiw GE, Chrapusta S, Karoum F, Weinberger DR (1992a) Ibotenic acid lesion of the ventral hippocampus differentially affects dopamine and its metabolites in the nucleus accumbens and prefrontal cortex in the rat. Brain Res 585: 1–6

    Google Scholar 

  • Lipska BK, Jaskiw GE, Phillips I, Weinberger DR (1992b) Developmental effects on dopamine-related behaviors in rats with neonatal excitotoxic hippocampal lesions. Presented at the ACNP Annual Meeting, San Juan, PR

  • Litman RE, Hong WW, Weissman EM, Su TP, Potter WZ, Pickar D (1993) Idazoxan, an alpha 2 antagonist, augments fluphenazine in schizophrenic patients: a pilot study. J Clin Psychopharmacol 13: 264–267

    Google Scholar 

  • Litwin LC, Goldstein JM (1994) Effects of neurotensin on mid-brain dopamine neuronal activity. Drug Dev Res 1994 32: 6–12

    Google Scholar 

  • Ljungberg T, Ungerstedt U (1978) Classification of neuroleptic drugs according to their ability to inhibit apomorphine-induced locomotion and gnawing: evidence for two different mechanisms of action. Psychopharmacology 56: 239–247

    Google Scholar 

  • Lublin H, Gerlach J, Morkeberg F (1994) Long-term treatment with low doses of the D1 antagonist NNC 756 and the D2 antagonist raclopride in monkeys previously exposed to dopamine antagonists. Psychopharmacology 114: 495–504

    Google Scholar 

  • Lynch MR (1992) Schizophrenia and the D1 receptor: focus on negative symptoms. Prog Neuropsychopharmacol Biol Psychiatry 16: 797–832

    Google Scholar 

  • Macciardi F, Petronis A, Vantol HHM, Marino C, Cavallini MC, Smeraldi E, Kennedy JL (1994) Analysis of the D4 dopamine receptor gene variant in an Italian schizophrenia kindred. Arch Gen Psychiatry 51: 288–293

    Google Scholar 

  • Macgibbon GA, Lawlor PA, Bravo R, Dragunow M (1994) Clozapine and haloperidol produce a differential pattern of immediate early gene expression in rat caudate-putamen, nucleus accumbens, lateral septum and islands of calleja. Mol Brain Res 23: 21–32

    Google Scholar 

  • Maertens de Noordhout A, Delwaide PJ (1986) Open pilot trial of ritanserin in parkinsonism. Clin Neuropharmacol 9: 480–484

    Google Scholar 

  • Magnusson O, Fowler CJ, Kohler C, Ogren SO (1986) Dopamine D2 receptors and dopamine metabolism. Relationship between biochemical and behavioural effects of substituted benzamide drugs. Neuropharmacology 25: 187–197

    Google Scholar 

  • Maidment NT, Marsden CA (1987a) Acute administration of clozapine, thioridazine and metoclopramide increases extracellular DOPAC and decreases extracellular 5-HIAA, measured in the nucleus accumbens and striatum of the rat using in vivo voltammetry. Neuropharmacology 26: 187–193

    Google Scholar 

  • Maidment NT, Marsden CA (1987b) Repeated atypical neuroleptic administration: effects on central dopamine metabolism monitored by in vivo voltammetry. Eur J Pharmacol 136: 141–149

    Google Scholar 

  • Maj J, Sowinska H, Baran L, Kapturkiewicz Z (1974) The effects of clozapine, thioridazine and phenoxybenzamine on the action of drugs stimulating the central catecholamine receptors. Pol J Pharmacol Pharm 26: 437–448

    Google Scholar 

  • Maj J, Sarnek J, Klimek V, Rawlow A (1976) On the anticataleptic action of cyproheptadine. Pharmacol Biochem Behav 5: 201–205

    Google Scholar 

  • Malmberg A, Jackson DM, Eriksson A, Mohell N (1993) Unique binding characteristics of antipsychotic agents interacting with human dopamine D2A, D2B, and D3 receptors. Mol Pharmacol 43: 749–754

    Google Scholar 

  • Marder SR (1992) Risperidone: clinical development: north American results. Clin Neuropharmacol 15 [Suppl 1 Pt A]: 92A-93A

    Google Scholar 

  • Marder SR, Meibach RC (1994) Risperidone in the treatment of schizophrenia. Am J Psychiatry 151:825–835

    Google Scholar 

  • Marin C, Parashos SA, Kapitzoglou-Logothetis V, Peppe A, Chase TN (1993) D1 and D2 dopamine receptor-mediated mechanisms and behavioral supersensitivity. Pharmacol Biochem Behav 45: 195–200

    Google Scholar 

  • Marwood JF (1994) Influence of alpha 1-adrenoceptor antagonism of ketanserin on the nature of its 5-HT2 receptor antagonism. Clin Exp Pharmacol Physiol 21: 955–961

    Google Scholar 

  • Matsubara S, Meltzer HY (1989) Effect of typical and atypical antipsychotic drugs on 5-HT2 receptor density in rat cerebral cortex. Life Sci 45: 1397–1406

    Google Scholar 

  • Matsubara S, Matsubara R, Kusumi I, Koyama T, Yamashita I (1993) Dopamine D1, D2 and serotonin2 receptor occupation by typical and atypical antipsychotic drugs in vivo. J Pharmacol Exp Ther 265: 498–508

    Google Scholar 

  • Matsumoto M, Hidaka K, Tada S, Tasaki Y, Yamaguchi T (1995) Polymorphic tandem repeats in dopamine D4 receptor are spread over primate species. Biochem Biophys Res Commun 207: 467–475

    Google Scholar 

  • McAllister G, Knowles MR, Wardbooth SM, Sinclair HA, Patel S, Marwood R, Emms F, Patel S, Smith A, Seabrook GR, Freedman SB (1995) Functional coupling of human D-2, D-3, and D-4 dopamine receptors in HEK293 cells. J Recept Signal Transduct Res 15: 267–281

    Google Scholar 

  • McCreadie RG, Todd N, Livingston M, Eccleston D, Watt JA, Herrington RN, Tait D, Crocket G, Mitchell MJ, Huitfeldt B (1990) A double-blind comparative study of remoxipride and thioridazine in the acute phase of schizophrenia. Acta Psychiatr Scand Suppl 358: 136–137

    Google Scholar 

  • McEvoy JP, Hogarty GE, Steingard S (1991) Optimal dose of neuroleptic in acute schizophrenia. A controlled study of the neuroleptic threshold and higher haloperidol dose. Arch Gen Psychiatry 48: 739–745

    Google Scholar 

  • McEvoy J, Borison R, Small J, van Kammen D, Meltzer H, Hammer M, Morris D, Shu V, Sebree T, Grebb J, Kashin K (1993) The efficacy and tolerability of setindole in schizophrenic patients: a pilot, double-blind, placebo-controlled, dose-ranging study. Presented at the ACNP Annual Meeting, San Juan, PR

  • McMillen BA, Scott SM, Davanzo EA (1988) Reversal of neuroleptic-induced catalepsy by novel aryl-piperazine anxiolytic drugs. J Pharm Pharmacol 40: 885–887

    Google Scholar 

  • McPherson SE, Loo P, Braunwalder A, Wood PL (1987) Enhancement of the in vivo binding of [3H]flunitrazepam by the atypical neuroleptic, clozapine. Neuropharmacology 26: 265–269

    Google Scholar 

  • Meco G, Marini S, Lestingi L, Linfante I, Modarelli FT, Agnoli A (1988) Controlled single-blind crossover study of ritanserin and placebo inl-dopa-induced dyskinesias in Parkinson's disease. Curr Ther Res 43: 262–270

    Google Scholar 

  • Meco G, Alessandria A, Bonifati V, Giustini P (1994) Risperidone for hallucinations in levodopa-treated Parkinson's disease patients. Lancet 343: 1370–1371

    Google Scholar 

  • Megens AAHP, Awouters FHL, Schotte A, Meert TF, Dugovic C, Niemegeers CJE, Leysen JE (1994) Survey on the pharmacodynamics of the new antipsychotic risperidone. Psychopharmacology 114: 9–23

    Google Scholar 

  • Mehta AK, Ticku MK (1990) Role ofN-methyl-d-aspartate (NMDA) receptors in experimental catalepsy in rats. Life Sci 46: 37–42

    Google Scholar 

  • Meltzer HY (1991) The mechanism of action of novel antipsychotic drugs. Schizophr Bull 17: 263–287

    Google Scholar 

  • Meltzer HY (1994) (cited within) J Clin Psychiatry (Monograph Series) 12 [2]: 23

    Google Scholar 

  • Meltzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251: 238–246

    Google Scholar 

  • Meltzer HY, Burnett S, Bastani B, Ramirez LF (1990) Effects of six months of clozapine treatment on the quality of life of chronic schizophrenic patients. Hosp Commun Psychiatry 41: 892–897

    Google Scholar 

  • Mendis T, Mohr E, George A, Rusk IN, Gray P, Grimes JD (1994) Symptomatic relief from treatment-induced psychosis in Parkinson's disease — an open-label pilot study with remoxipride. Move Disord 9: 197–200

    Google Scholar 

  • Menon MK, Gordon LI, Fitten J (1988) Interaction between clozapine and a lipophilic alpha 1-adrenergic agonist. Life Sci 43: 1791–1804

    Google Scholar 

  • Merchant KM, Dorsa DM (1993) Differential induction of neurotensin and c-fos gene expression by typical versus atypical antipsychotics. Proc Natl Acad Sci USA 90: 3447–3451

    Google Scholar 

  • Merchant KM, Miller MA (1994) Coexpression of neurotensin and C-fos mRNAs in rat neostriatal neurons following acute haloperidol. Mol Brain Res 23: 271–277

    Google Scholar 

  • Merchant KM, Dobie DJ, Dorsa DM (1992a) Expression of the proneurotensin gene in the rat brain and its regulation by antipsychotic drugs. Ann NY Acad Sci 668: 54–69

    Google Scholar 

  • Merchant KM, Dobner PR, Dorsa DM (1992b) Differential effects of haloperidol and clozapine on neurotensin gene transcription in rat neostriatum. J Neurosci 12: 652–663

    Google Scholar 

  • Mercugliano M, Chesselet MF (1992) Clozapine decreases enkephalin mRNA in rat striatum. Neurosci Lett 136: 10–14

    Google Scholar 

  • Meshul CK, Stallbaumer RK, Taylor B, Janowsky A (1994) Haloperidol-induced morphological changes in striatum are associated with glutamate synapses. Brain Res 648: 181–195

    Google Scholar 

  • Metysova J, Protiva M (1975) Proceedings: stereospecificity of neuroleptic effects in the 10-piperazino-10, 11-dihydrodibenzo (b, f) thiepin series. Act Nerv Super (Praha) 17: 218–219

    Google Scholar 

  • Miller RJ, Hiley CR (1974) Anti-muscarinic properties of neuroleptics and drug-induced Parkinsonism. Nature 248: 596–597

    Google Scholar 

  • Min SK, Rhee CS, Kim CE, Kang DY (1993) Risperidone versus haloperidol in the treatment of chronic schizophrenic patients: a parallel group double-blind comparative trial. Yonsei Med J 34: 179–190

    Google Scholar 

  • Minabe Y, Ashby CR Jr, Wang RY (1991) The CCK-A receptor antagonist devazepide but not the CCK-B receptor antagonist L-365,260 reverses the effects of chronic clozapine and haloperidol on midbrain dopamine neurons. Brain Res 549: 151–154

    Google Scholar 

  • Mita T, Hanada S, Nishino N, Kuno T, Nakai H, Yamadori T, Mizoi Y, Tanaka C (1986) Decreased serotonin S2 and increased dopamine D2 receptors in chronic schizophrenics. Biol Psychiatry 21: 1407–1414

    Google Scholar 

  • Moghaddam B, Bunney BS (1990) Acute effect of typical and atypical antipsychotic drugs on the release of dopamine from the prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study. J Neurochem 54: 1755–1760

    Google Scholar 

  • Mohammed AK, Danysz W, Ogren SO, Archer T (1986) Central noradrenaline depletion attenuates amphetamine-induced locomotor behavior. Neurosci Lett 64: 139–144

    Google Scholar 

  • Moore NA, Tye NC, Axton MS, Risius FC (1992) The behavioral pharmacology of olanzapine, a novel atypical antipsychotic agent. J Pharmacol Exp Ther 262: 545–551

    Google Scholar 

  • Moore NA, Rees G, Sanger G, Tye NC (1994) Effects of olanzapine and other antipsychotic agents on responding maintained by a conflict schedule. Behav Pharmacol 5: 196–202

    Google Scholar 

  • Moore S, Kenyon P (1994) Atypical antipsychotics, clozapine and sulpiride do not antagonise amphetamine-induced stereotyped locomotion. Psychopharmacology 114: 123–130

    Google Scholar 

  • Muller-Spahn F (1992) Risperidone in the treatment of chronic schizophrenic patients: an international double-blind parallel-group study versus haloperidol. The International Risperidone Research Group. Clin Neuropharmacol 15 [Suppl 1 Pt A]: 90A-91A

    Google Scholar 

  • Murray AM, Hyde TM, Knable MB, Herman MM, Bigelow LB, Carter JM, Weinberger DR, Kleinman JE (1995) Distribution of putative D4 dopamine receptors in postmortem striatum from patients with schizophrenia. J Neurosci 15: 2186–2191

    Google Scholar 

  • Nakra BRS, Bond AJ, Lader HM (1975) Comparative effects of metoclopramide and prochlorperazine in normal subjects. J Clin Pharmacol 15: 449–454

    Google Scholar 

  • Neal-Beliveau BS, Joyce JN, Lucki I (1993) Serotonergic involvement in haloperidol-induced catalepsy. J Pharmacol Exp Ther 265: 207–217

    Google Scholar 

  • Newcomer JW, Faustman WO, Zipursky RB, Csernansky JG (1992) Zacopride in schizophrenia: a single-blind serotonin type 3 antagonist trial. Arch Gen Psychiatry 49: 751–752

    Google Scholar 

  • Nguyen TV, Kosofsky BE, Birnbaum R, Cohen BM, Hyman SE (1992) Differential expression of c-fos and zif268 in rat striatum after haloperidol, clozapine, and amphetamine. Proc Natl Acad Sci USA 89: 4270–4274

    Google Scholar 

  • Nomikos GG, Iurlo M, Andersson JL, Kimura K, Svensson TH (1994) Systemic administration of amperozide, a new atypical antipsychotic drug, preferentially increases dopamine release in the rat medial prefrontal cortex. Psychopharmacology 115: 147–156

    Google Scholar 

  • Nordstrom AL, Farde L, Halldin C (1993) High 5-HT(2) Receptor occupancy in clozapine treated patients demonstrated by PET. Psychopharmacology 110: 365–367

    Google Scholar 

  • Nordstrom Al, Farde L, Nyberg S, Karlsson P, Halldin C, Sedvall G (1995) D1, D2, and 5HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am J Psychiatry 152: 1444–1449

    Google Scholar 

  • Nothen MM, Cichon S, Hemmer S, Hebebrand J, Remschmidt H, Lehmkuhl G, Poustka F, Schmidt M, Catalano M, Fimmers R, Korner J, Rietschel M, Propping P (1994) Human dopamine D4 receptor gene: frequent occurrence of a null allele and observation of homozygosity. Hum Mol Genet 3: 2207–2212

    Google Scholar 

  • Nyberg S, Farde L, Eriksson L, Halldin C, Eriksson B (1993a) 5-HT(2) and D(2) dopamine receptor occupancy in the living human brain — a PET study with risperidone. Psychopharmacology 110: 265–272

    Google Scholar 

  • Nyberg S, Halldin C, Bertilsson L, Farde L (1993b) D2 occupancy and clinical state in schizophrenic patients on depot neuroleptics. Presented at the American College of Neuropsychopharmacology, 32nd Annual Meeting, Honolulu, Hawaii

  • O'Connor WT, Drew KL, Ungerstedt U (1989) Differences in dopamine release and metabolism in rat striatal subregions following acute clozapine using in vivo microdialysis. Neurosci Lett 98: 211–216

    Google Scholar 

  • O'Dell SJ, LaHoste GJ, Widmark CB, Shapiro RM, Potkin SG, Marshall JP (1990) Chronic treatment with clozapine or haloperidol differentially regulates dopamine and serotonin receptors in rat brain. Synapse 6: 146–153

    Google Scholar 

  • Ogren SO, Archer T (1994) Effects of typical and atypical antipsychotic drugs on two-way active avoidance — relationship to dopamine receptor blocking profile. Psychopharmacology 114: 383–391

    Google Scholar 

  • Ogren SO, Fuxe K (1988) D1- and D2-receptor antagonist induce catalepsy via different efferent striatal pathways. Neurosci Lett 85: 333–338

    Google Scholar 

  • Ogren SO, Hall H, Kohler C (1978) Studies on the stereoselective dopamine receptor blockade in the rat brain by rigid spiro amines. Life Sci 23: 1769–1773

    Google Scholar 

  • Ogren SO, Archer T, Johansson C (1983) Evidence for a selective brain noradrenergic involvement in the locomotor stimulant effects of amphetamine in the rat. Neurosci Lett 43: 327–331

    Google Scholar 

  • Ogren SO, Hall H, Kohler C, Magnusson O, Lindbom LO, Angeby K, Florvall L (1984) Remoxipride, a new potential antipsychotic compound with selective antidopaminergic actions in the rat brain. Eur J Pharmacol 102: 459–474

    Google Scholar 

  • Ogren SO, Hall H, Kohler C, Magnusson O, Florvall L (1985) [Selective antidopaminergic properties of remoxiprid, a new potential antipsychotic agent] Die selektiven antidopaminergen Eigenschaften von Remoxiprid, einem neuen moglichen antipsychotischen Wirkstoff. Arzneimittelforschung 35: 1227–1231

    Google Scholar 

  • Ogren SO, Hall H, Kohler C, Magnusson O, Sjostrand SE (1986) The selective dopamine D2 receptor antagonist raclopride discriminates between dopamine-mediated motor functions. Psychopharmacology 90:287–294

    Google Scholar 

  • Olbrich R, Schanz H (1988) The effect of the partial dopamine agonist terguride on negative symptoms in schizophrenics. Pharmacopsychiatry 21: 389–390

    Google Scholar 

  • Ongur D, Deutch AY (1993) Mediodorsal thalamic lesions differentially regulate dopamine metabolism in prefrontal cortical subfields and nucleus accumbens compartments. Soc Neurosci Abstr 19: 1214

    Google Scholar 

  • Overton P, Clark D (1992a) Iontophoretically administered drugs acting at theN-methyl-D-aspartate receptor modulate burst firing in A9 dopamine neurons in the rat. Synapse 10: 131–140

    Google Scholar 

  • Overton P, Clark D (1992b) Electrophysiological evidence that intrastriatally administeredN-methyl-D-aspartate augments striatal dopamine tone in the rat. J Neural Transm [Park Dis Dement Sect] 4: 1–14

    Google Scholar 

  • Owen RR Jr, Gutierrez-Esteinou R, Hsiao J, Hadd K, Benkelfat C, Lawlor BA, Murphy DL, Pickar D (1993) Effects of clozapine and fluphenazine treatment on responses tom-chlorophenylpiperazine infusions in schizophrenia. Arch Gen Psychiatry 50: 636–644

    Google Scholar 

  • Owens DGC, Harrisonread PE, Johnstone EC (1994)L-Dopa helps positive but not negative features of neuroleptic-insensitive chronic schizophrenia. J Psychopharmacol 8: 204–212

    Google Scholar 

  • Parashos SA, Marin C, Chase TN (1989) Synergy between a selective D1 antagonist and a selective D2 antagonist in the induction of catalepsy. Neurosci Lett 105: 169–173

    Google Scholar 

  • Patris M, Agussol P, Alby JM, Brion S, Burnat G, Castelnau D, Deluermoz S, Dufour H, Ferreri M, Goudemand M (1990) A double-blind multicentre comparison of remoxipride, at two dose levels, and haloperidol. Acta Psychiatr Scand Suppl 358: 78–82

    Google Scholar 

  • Peacock L, Lublin H, Gerlach J (1990) The effects of dopamine D1 and D2 receptor agonists and antagonists in monkeys withdrawn from long-term neuroleptic treatment. Eur J Pharmacol 186: 49–59

    Google Scholar 

  • Pearce RK, Seeman P, Jellinger K, Tourtellotte WW (1990) Dopamine uptake sites and dopamine receptors in Parkinson's disease and schizophrenia. Eur Neurol 30 [Suppl 1]: 9–14

    Google Scholar 

  • Pickar D, Owen RR, Litman RE, Konicki E, Gutierrez R, Rapaport MH (1992) Clinical and biologic response to clozapine in patients with schizophrenia. Crossover comparison with fluphenazine. Arch Gen Psychiatry 49: 345–353

    Google Scholar 

  • Piercey MF, Broderick PA, Hoffmann WE, Vogelsang GD (1990) U-66444B and U-68553B, potent autoreceptor agonists at dopaminergic cell bodies and terminals. J Pharmacol Exp Ther 254: 369–374

    Google Scholar 

  • Pijnenburg A, Honig W, van Rossum J (1975) Inhibition ofd-amphetamine induced locomotor activity by injection of haloperidol into the nucleus accumbens septi of the rat. Psychopharmacologia 41: 87–95

    Google Scholar 

  • Pilowsky LS, Costa DC, Ell PJ, Murray RM, Verhoeff NP, Kerwin RW (1992) Clozapine, single photon emission tomography, and the D2 dopamine receptor blockade hypothesis of schizophrenia. Lancet 340: 199–202

    Google Scholar 

  • Pinter MM, Helscher RJ (1993) Therapeutic Effect of clozapine in psychotic decompensation in idiopathic Parkinson's Disease. J Neural Transm [Parkinsons] 5: 135–146

    Google Scholar 

  • Pires JG, Ramage AG, Silva SR, Futuro Neto HA (1993a) Effects of the 5-HT receptor antagonists cyanopindolol, ICI 169,369, cisapride and granisetron on neuroleptic-induced catalepsy in mice. Braz J Med Biol Res 26: 847–852

    Google Scholar 

  • Pires JG, Silva SR, Ramage AG, Futuro-Neto-HA (1993b) Influence of median raphe nucleus lesions on neuroleptic-induced catalepsy and on the anticataleptic effect of buspirone. Braz J Med Biol Res 26: 323–326

    Google Scholar 

  • Pirot S, Godbout R, Mantz J, Tassin JP, Glowinski J, Thierry AM (1992) Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components. Neuroscience 49: 857–865

    Google Scholar 

  • Popova NK, Kulikov AV, Kolpakov VG, Barykina NN, Alekhina TA (1985) [Changes in the serotonin system of the brains of rats genetically predisposed to catalepsy] Izmeneniia v serotoninovoi sisteme mozga krys, geneticheski predraspolozhennykh k katalepsii. Zh Vyssh Nerv Deiat 35: 742–746

    Google Scholar 

  • Povlsen UJ, Noring U, Laursen AL, Korsgaard S, Gerlach J (1986) Effects of serotonergic and anticholinergic drugs in haloperidol-induced dystonia in Cebus monkeys. Clin Neuropharmacol 9: 84–90

    Google Scholar 

  • Prinssen EP, Ellenbroek BA, Stamatovic B, Cools AR (1993) The effects of haloperidol and raclopride in the paw test are influenced similarly by SCH 39166. Eur J Pharmacol 231: 275–280

    Google Scholar 

  • Prinssen EPM, Ellenbroek BA, Cools AR (1994a) Peripheral and central adrenoceptor modulation of the behavioural effects of clozapine in the paw test. Br J Pharmacol 112: 769–774

    Google Scholar 

  • Prinssen EPM, Ellenbroek BA, Cools AR (1994b) Combined antagonism of adrenoceptors and dopamine and 5-HT receptors underlies the atypical profile of clozapine. Eur J Pharmacol 262: 167–170

    Google Scholar 

  • Prisco S, Pagannone S, Esposito E (1994) Serotonin-dopamine interaction in the rat ventral tegmental area: an electrophysiological study in vivo. J Pharmacol Exp Ther 271: 83–90

    Google Scholar 

  • Qin ZH, Zhou LW, Weiss B (1994) D2 dopamine receptor messenger RNA is altered to a greater extent by blockade of glutamate receptors than by blockade of dopamine receptors. Neuroscience 60: 97–114

    Google Scholar 

  • Racagni G, Bruno F, Bugatti A, Parenti M, Apud JA, Santini V, Carenzi A, Groppetti A, Cattabeni F (1980) Behavioral and biochemical correlates after haloperidol and clozapine long-term treatment. Adv Biochem Psychopharmacol 24: 45–51

    Google Scholar 

  • Ramirez OA, Wang RY (1986) Locus coeruleus norepinephrine-containing neurons: effects produced by acute and subchronic treatment with antipsychotic drugs and amphetamine. Brain Res 362: 165–170

    Google Scholar 

  • Rao TS, Contreras PC, Cler JA, Emmett MR, Mick SJ, Iyengar S, Wood PL (1991) Clozapine attenuatesN-methyl-D-aspartate receptor complex-mediated responses in vivo: tentative evidence for a functional modulation by a noradrenergic mechanism. Neuropharmacology 30: 557–565

    Google Scholar 

  • Rasmussen K, Stockton ME, Czachura JF, Howbert JJ (1991) Cholecystokinin (CCK) and schizophrenia: the selective CCKB antagonist LY262691 decreases midbrain dopamine unit activity. Eur J Pharmacol 209: 135–138

    Google Scholar 

  • Rasmussen K, Czachura JF, Stockton ME, Howbert JJ (1993) Electrophysiological effects of diphenylpyrazolidinone cholecystokinin-B and cholecystokinin-A antagonists on midbrain dopamine neurons. J Pharmacol Exp Ther 264: 480–488

    Google Scholar 

  • Rayevsky KS, Gainetdinov RR, Kharlamov A (1993) Typical and atypical neuroleptics differentially affect striatal dopamine release and metabolism studied by microdialysis in freely moving rats. Soc Neurosci Abstr 19: 1065

    Google Scholar 

  • Rebec GV, Gelman J, Alloway KD, Bashore TR (1983) Cataleptogenic potency of the antipsychotic drugs is inversely correlated with neuronal activity in the amygdaloid complex of the rat. Pharmacol Biochem Behav 19: 759–763

    Google Scholar 

  • Reynolds GP, Mason SL (1994) Are striatal dopamine D-4 receptors increased in schizophrenia?. J Neurochem 63: 1576–1577

    Google Scholar 

  • Reynolds GP, Garrett NJ, Rupniak N, Jenner P, Marsden CD (1983) Chronic clozapine treatment of rats down-regulates cortical 5-HT2 receptors. Eur J Pharmacol 89: 325–326

    Google Scholar 

  • Riblet LA, Taylor DP, Eison MS, Stanton HC (1982) Pharmacology and neurochemistry of buspirone. J Clin Psychiatry 43: 11–18

    Google Scholar 

  • Richelson E (1984) Neuroleptic affinities for human brain receptors and their use in predicting adverse effects. J Clin Psychiatry 45: 331–336

    Google Scholar 

  • Richelson E, Nelson A (1984) Antagonism by neuroleptics of neurotransmitter receptors of normal human brain in vitro. Eur J Pharmacol 103: 197–204

    Google Scholar 

  • Rivest R, Marsden CA (1992) Differential effects of amfonelic acid on the haloperidol- and clozapine-induced increase in extracellular DOPAC in the nucleus accumbens and the striatum. Synapse 10: 71–78

    Google Scholar 

  • Robertson A, MacDonald C (1984) Atypical neuroleptics clozapine and thioridazine enhance amphetamine-induced stereotypy. Pharmacol Biochem Behav 21: 97–101

    Google Scholar 

  • Robertson GS, Fibiger HC (1992) Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience 46: 315–328

    Google Scholar 

  • Robertson GS, Pfaus JG, Atkinson LJ, Matsumura H, Phillips AG, Fibiger HC (1991) Sexual behavior increases c-fos expression in the forebrain of the male rat. Brain Res 564: 352–357

    Google Scholar 

  • Robertson GS, Vincent SR, Fibiger HC (1992) D1 and D2 dopamine receptors differentially regulate c-fos expression in striatonigral and striatopallidal neurons. Neuroscience 49: 285–296

    Google Scholar 

  • Rodrigues AA, Jansen FP, Leurs R, Timmerman H, Prell GD (1995) Interaction of clozapine with the histamine H-3 receptor in rat brain. Br J Pharmacol 114: 1523–1524

    Google Scholar 

  • Rogue PJ, Vincendon G, Malviya AN (1993) Differential induction of early genes in the CNS by typical and atypical neuroleptics. Soc Neurosci Abstr 19:1260

    Google Scholar 

  • Rosse RB, Theut SK, Banay-Schwartz M, Leighton M, Scarcella E, Cohen CG, Deutsch SI (1989) Glycine adjuvant therapy to conventional neuroleptic treatment in schizophrenia: an openlabel, pilot study. Clin Neuropharmacol 12: 416–424

    Google Scholar 

  • Rosse RB, Schwartz BL, Leighton MP, Davis RE, Deutsch SI (1990) An open-label trial of milacemide in schizophrenia: an NMDA intervention strategy. Clin Neuropharmacol 13: 348–354

    Google Scholar 

  • Roth BL, Ciaranello RD (1991) Chronic mianserin treatment decreases 5-HT2 receptor binding without altering 5-HT2 receptor mRNA levels. Eur J Pharmacol 207: 169–172

    Google Scholar 

  • Roth BL, Ciaranello RD, Meltzer HY (1992) Binding of typical and atypical antipsychotic agents to transiently expressed 5-HT1C receptors. J Pharmacol Exp Ther 260: 1361–1365

    Google Scholar 

  • Roth BL, Craigo SC, Choudhary MS, Uluer A, Monsma FJ, Shen Y, Meltzer HY, Sibley DR (1994) Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J Pharmacol Exp Ther 268: 1403–1410

    Google Scholar 

  • Roth RH, Bacopoulos NG, Bustos G, Redmond DE Jr (1980) Antipsychotic drugs: differential effects on dopamine neurons in basal ganglia and mesocortex following chronic administration in human and nonhuman primates. Adv Biochem Psychopharmacol 24: 513–520

    Google Scholar 

  • Rubinstein JE, Hitzemann RJ, Ashby CR, Wang RY (1989) Long-term treatment with antipsychotics does not alter the phosphoinositide response to muscarinic or D2 dopaminergic agonists in rat striatum. Brain Res 496: 385–388

    Google Scholar 

  • Ruch W, Asper H, Burki HR (1976) Effect of clozapine on the metabolism of serotonin in rat brain. Psychopharmacologia 46: 103–109

    Google Scholar 

  • Rupniak NM, Kilpatrick G, Hall MD, Jenner P, Marsden CD (1984) Differential alterations in striatal dopamine receptor sensitivity induced by repeated administration of clinically equivalent doses of haloperidol, sulpiride or clozapine in rats. Psychopharmacology 84: 512–519

    Google Scholar 

  • Rupniak NM, Hall MD, Mann S, Fleminger S, Kilpatrick G, Jenner P, Marsden CD (1985) Chronic treatment with clozapine, unlike haloperidol, does not induce changes in striatal D-2 receptor function in the rat. Biochem Pharmacol 34: 2755–2763

    Google Scholar 

  • Safferman AZ, Lieberman JA, Pollack S, Kane JM (1993) Akathisia and clozapine treatment. J Clin Psychopharmacol 13: 286–287

    Google Scholar 

  • Sanberg PR (1980) Haloperidol induced catalepsy is mediated by postsynaptic dopamine receptors. Nature 284: 472–473

    Google Scholar 

  • Sayers AC, Burki HR, Ruch W, Asper H (1975) Neuroleptic-induced hypersensitivity of striatal dopamine receptors in the rat as a model of tardive dyskinesias: effects of clozapine, haloperidol, loxapine and chlorpromazine. Psychopharmacologia 41: 97–104

    Google Scholar 

  • Schmidt CJ, Sullivan CK, Fadayel GM (1994) Blockade of striatal 5-hydroxytryptamine(2) receptors reduces the increase in extracellular concentrations of dopamine produced by the amphetamine analogue 3,4-methylenedioxymethamphetamine. J Neurochem 62: 1382–1389

    Google Scholar 

  • Schmidt WJ, Krahling H, Ruhland M (1987) Antagonism of AP-5- and amphetamine-induced behaviour by timelotem as compared with clozapine and haloperidol. Life Sci 41: 1909–1914

    Google Scholar 

  • Schmidt WJ, Krahling H, Ruhland M (1991) Antagonism of AP-5-induced sniffing stereotypy links umespirone to atypical antipsychotics. Life Sci 48: 499–505

    Google Scholar 

  • Schotte A, de Bruyckere K, Janssen PF, Leysen JE (1989) Receptor occupancy by ritanserin and risperidone measured using ex vivo autoradiography. Brain Res 500: 295–301

    Google Scholar 

  • Schotte A, Janssen PFM, Megens AAHP, Leysen JE (1993) Occupancy of central neurotransmitter receptors by risperidone, clozapine and haloperidol, measured ex vivo by quantitative autoradiography. Brain Res 631: 191–202

    Google Scholar 

  • Schremmer C, Morgenstern R, Fink H, Ott T (1990) Atypical neuroleptics suppress dopaminergic behavioral supersensitivity. Psychopharmacology 100 [3]: 399–403

    Google Scholar 

  • Sebens JB, Koch T, Terhorst GJ, Korf J (1995) Differential Fosprotein induction in rat forebrain regions after acute and long-term haloperidol and clozapine treatment. Eur J Pharmacol 273: 175–182

    Google Scholar 

  • See RE, Ellison G (1990) Comparison of chronic administration of haloperidol and the atypical neuroleptics, clozapine and raclopride, in an animal model of tardive dyskinesia. Eur J Pharmacol 181: 175–186

    Google Scholar 

  • See RE, Toga AW, Ellison G (1990) Autoradiographic analysis of regional alterations in brain receptors following chronic administration and withdrawal of typical and atypical neuroleptics in rats. J Neural Transm [Gen Sect] 82: 93–109

    Google Scholar 

  • Seeger TF, Thal L, Gardner EL (1982) Behavioral and biochemical aspects of neuroleptic-induced dopaminergic supersensitivity: studies with chronic clozapine and haloperidol. Psychopharmacology 76: 182–187

    Google Scholar 

  • Seeman MV, Seeman P (1988) Psychosis and positron tomography. Can J Psychiatry 33: 299–306

    Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1: 133–152

    Google Scholar 

  • Seeman P, Guan HC, Guan HC, Niznik HB (1989a) Endogenous dopamine lowers the dopamine D2 receptor density as measured by [3H]raclopride: implications for positron emission tomography of the human brain. Synapse 3: 96–97

    Google Scholar 

  • Seeman P, Guan H-C, Van Tol HHM (1993) Dopamine D4 receptors elevated in schizophrenics. Nature 365: 441–445

    Google Scholar 

  • Seeman P, Niznik HB (1990) Dopamine receptors and transporters in Parkinson's disease and schizophrenia. FASEB J 4: 2737–2744

    Google Scholar 

  • Seeman P, Niznik HB, Guan HC, Booth G, Ulpian C (1989b) Link between D1 and D2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain. Proc Natl Acad Sci USA 86: 10156–10160

    Google Scholar 

  • Seeman P, Ulpian C (1983) Neuroleptics have identical potencies in human brain limbic and putamen regions. Eur J Pharmacol 94: 145–148

    Google Scholar 

  • Seeman P, Van Tol HHM (1994) Dopamine receptor pharmacology. Trends Pharmacol Sci 15: 264–270

    Google Scholar 

  • Seibyl JP, Krystal JH, Price LH, Woods SW, D'Amico C, Heninger GR, Charney DS (1991) Effects of ritanserin on the behavioral, neuroendocrine, and cardiovascular responses to metachlorophenylpiperazine in health human subjects. Psychiatry Res 38: 227–236

    Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1990) Topographic intermingling of striatonigral and striatopallidal neurons in the rhesus monkey. J Comp Neurol 297: 359–376

    Google Scholar 

  • Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 320: 145–160

    Google Scholar 

  • Silver H, Nassar A (1992) Fluvoxamine improves negative symptoms in treated chronic schizophrenia: an add-on double-blind, placebo-controlled study. Biol Psychiatry 31: 698–704

    Google Scholar 

  • Simiand J, Keane PE, Barnouin MC, Keane M, Soubrie P, Le Fur G (1993) Neuropsychopharmacological profile in rodents of SR 57746A, a new, potent 5-HT1A receptor agonist. Fundam Clin Pharmacol 7: 413–427

    Google Scholar 

  • Skarsfeldt T (1988a) Differential effects after repeated treatment with haloperidol, clozapine, thioridazine and tefludazine on SNC and VTA dopamine neurones in rats. Life Sci 42: 1037–1044

    Google Scholar 

  • Skarsfeldt T (1988b) Effect of chronic treatment with SCH 23390 and haloperidol on spontaneous activity of dopamine neurones in substantia nigra pars compacta (SNC) and ventral tegmental area (VTA) in rats. Eur J Pharmacol 145: 239–243

    Google Scholar 

  • Skarsfeldt T (1992) Electrophysiological profile of the new atypical neuroleptic, sertindole, on midbrain dopamine neurones in rats: acute and repeated treatment. Synapse 10: 25–33

    Google Scholar 

  • Skarsfeldt T (1993) Comparison of the effect of substituted benzamides on midbrain dopamine neurones after treatment of rats for 21 days. Eur J Pharmacol 240: 269–275

    Google Scholar 

  • Skarsfedt T (1994) Comparison of short-term administration of sertindole, clozapine and haloperidol on the inactivation of midbrain dopamine neurons in the rat. Eur J Pharmacol 254: 291–294

    Google Scholar 

  • Skarsfeldt T, Perregaard J (1990) Sertindole, a new neuroleptic with extreme selectivity on A10 versus A9 dopamine neurones in the rat. Eur J Pharmacol 182: 613–614

    Google Scholar 

  • Smith RC, Davis JM (1976) Behavioral evidence for supersensitivity after chronic administration of haloperidol, clozapine, and thioridazine. Life Sci 19: 725–731

    Google Scholar 

  • Snyder SH, Greenberg D, Yamumura HI (1974) Antischizophrenic drugs: affinity for muscarinic cholinergic receptor sites in the brain predicts extrapyramidal effects. J Psychiatr Res 11: 91–95

    Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347: 146–151

    Google Scholar 

  • Sommer SS, Lind TJ, Heston LL, Sobell JL (1993) Dopamine D4 receptor variants in unrelated schizophrenic cases and controls. Am J Med Genet 48: 90–93

    Google Scholar 

  • Sommermeyer H, De Vry J, Greuel J, Glaser T (1993) Attenuation of haloperidol-induced dopamine release by 8-OH DPAT in the rat: a correlate for the anticataleptic effects of 8-OH-DPAT. Soc Neurosci Abstr 19: 1384

    Google Scholar 

  • Sommermeyer H, Frielingsdorf J, Knorr A (1995) Effects of prazosin on the dopaminergic neurotransmission in rat brain. Eur J Pharmacol 276: 267–270

    Google Scholar 

  • Spina E, Dedomenico P, Ruello C, Longobardo N, Gitto C, Ancione M, Dirosa AE, Caputi AP (1994) Adjunctive fluoxetine in the treatment of negative symptoms in chronic schizophrenic patients. Int Clin Psychopharmacol 9: 281–285

    Google Scholar 

  • Stanley M, Wilk S (1980) Acute and chronic effects of haloperidol and clozapine on dopamine metabolism in two dopamine rich areas of the rat brain. Res Commun Psych Psychiat Behav 5: 37–47

    Google Scholar 

  • Stanley M, Lautin A, Rotrosen J, Gershon S, Kleinberg D (1980) Metoclopramide: antipsychotic efficacy of a drug lacking potency in receptor models. Psychopharmacology 71: 219–225

    Google Scholar 

  • Stewart BR, Jenner P, Marsden CD (1988) The pharmacological characterisation of pilocarpine-induced purposeless chewing behaviour in the rat. Psychopharmacology 96: 55–62

    Google Scholar 

  • Stille G, Lauener H, Eichenberger E (1971) The pharmacology of 8-chloro-11-(4-methyl-1-piperazinyl)-5H-dibenzo(b,e)(1,4)diazepine (clozapine). Farmaco [Prat] 26: 603–625

    Google Scholar 

  • Stockmeier CA, DiCarlo JJ, Zhang Y, Thompson P, Meltzer HY (1993) Characterization of typical and atypical antipsychotic drugs based on in vivo occupancy of serotonin2 and dopamine2 receptors. J Pharmacol Exp Ther 266: 1374–1384

    Google Scholar 

  • Stowe ZN, Bissette G, Nemeroff CB (1991) Neurotensin-dopamine interactions: relevance to schizophrenia and the action of antipsychotic drugs. Yakubutsu Seishin Kodo 11: 49–59

    Google Scholar 

  • Strupczewski JT, Bordeau KJ, Chiang YL, Glamkowski EJ, Conway PG, Corbett R, Hartman HB, Szewzak MR, Wilmot CA, Helsley GC (1995) 3-[[(Aryloxy)alkyl]piperidinyl]-1,2-benzisoxazoles as D-2/5-HT2 antagonists with potential atypical antipsychotic activity: antipsychotic profile of iloperidone (HP 873). J Med Chem 38: 1119–1131

    Google Scholar 

  • Sumiyoshi T, Kido H, Sakamoto H, Urasaki K, Suzuki K, Yamaguchi N, Mori H, Shiba K, Yokogawa K (1994a) In vivo dopamine-D-2 and serotonin-5-HT2 receptor binding study of risperidone and haloperidol. Pharmacol Biochem Behav 47: 553–557

    Google Scholar 

  • Sumiyoshi T, Kido H, Sakamoto H, Urasaki K, Suzuki K, Yamaguchi N, Mori H, Shiba K (1994b) Time course of dopamine(1,2) and serotonin(2) receptor binding of antipsychotics in vivo. Pharmacol Biochem Behav 49: 165–169

    Google Scholar 

  • Svartengren J, Celander M (1994) The limbic functional selectivity of amperozide is not mediated by dopamine D-2 receptors as assessed by in vitro and in vivo binding. Eur J Pharmacol 254: 73–81

    Google Scholar 

  • Svensson A, Carlsson A, Carlsson ML (1992) Differential locomotor interactions between dopamine D1/D2 receptor agonists and the NMDA antagonist dizocilpine in monoamine-depleted mice. J Neural Transm [Gen Sect] 90: 199–217

    Google Scholar 

  • Svensson A, Carlsson ML, Carlsson A (1993) Glutamate in the ventral striatum can affect psychomotor functions in opposite directions depending on the dopaminergic tone. Soc Neurosci Abstr 19: 1582

    Google Scholar 

  • Svensson A, Carlsson ML, Carlsson A (1994) Glutamatergic neurons projecting to the nucleus accumbens can affect motor functions in opposite directions depending on the dopaminergic tone. Prog Neuropsychopharmacol Biol Psychiatry 18: 1203–1218

    Google Scholar 

  • Tamminga C, Gerlach J (1987) Neuroleptics and experimental antipsychotics in schizophrenia. In: Meltzer HY (ed) Psychopharmacology: the third generation of Progress. Raven Press, New York, pp 1129–1140

    Google Scholar 

  • Tamminga CA, Cascella N, Dixon L, Fahouki T, Herting RL (1990) Excitatory amino acid pharmacotherapy in schizophrenia. Presented at the 17th Congress of CINP, Kyoto, Japan

  • Tamminga CA, Cascella NG, Lahti RA, Lindberg M, Carlsson A (1992) Pharmacologic properties of (-)-3PPP (preclamol) in man. J Neural Transm [Gen Sect] 88: 165–175

    Google Scholar 

  • Todorova A, Dimpfel W (1994) Multiunit activity from the A9 and A10 areas in rats following chronic treatment with different neuroleptic drugs. Eur Neuropsychopharmacol 4: 491–501

    Google Scholar 

  • Tucci S, Fernandez R, Baptista T, Murzi E, Hernandez L (1994) Dopamine increase in the prefrontal cortex correlates with reversal of haloperidol-induced catalepsy in rats. Brain Res Bull 35: 125–133

    Google Scholar 

  • Ugedo L, Grenhoff J, Svensson TH (1989) Ritanserin, a 5-HT2 receptor antagonist, activates midbrain dopamine neurons by blocking serotonergic inhibition. Psychopharmacology 98: 45–50

    Google Scholar 

  • Uzan A, Le Fur G, Mitrani N, Kabouche M, Donadieu AM (1978) Effects on striatal and mesolimbic dopamine systems of a new potential antipsychotic drug — mezilamine — with weak cataleptogenic properties. Life Sci 23: 261–273

    Google Scholar 

  • van Kammen DP, Yao J, Gurklis J, O'Connor D, Nofzinger E, Peters JL (1992) CSF noradrenergic activity and sleep EEG in clinically stable schizophrenic patients after haloperidol withdrawal. Clin Neuropharmacol 15 [Suppl 1 Pt A]: 325A-326A

    Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan H-C, Sunhara RK, Seeman P, Niznik HB, Civelli O (1991) Cloning of the gene for a human dopamine D4 receptor with a high affinity for the antipsychotic clozapine. Nature 350: 610–614

    Google Scholar 

  • Van Tol HH, Wu CM, Guan HC, Ohara K, Bunzow JR, Civelli O, Kennedy J, Seeman P, Niznik HB, Jovanovic V (1992) Multiple dopamine D4 receptor variants in the human population. Nature 358: 149–152

    Google Scholar 

  • Wadenberg ML (1992) Antagonism by 8-OH-DPAT, but not ritanserin, of catalepsy induced by SCH 23390 in the rat. J Neural Transm [Gen Sect] 89: 49–59

    Google Scholar 

  • Wadenberg ML, Cortizo L, Ahlenius S (1994) Evidence for specific interactions between 5-HT1A and dopamine D-2 receptor mechanisms in the mediation of extrapyramidal motor functions in the rat. Pharmacol Biochem Behav 47: 509–513

    Google Scholar 

  • Waldmeier PC, Delini-Stula AA (1979) Serotonin-dopamine interactions in the nigrostriatal system. Eur J Pharmacol 55: 363–373

    Google Scholar 

  • Waldmeier PC, Maitre L (1976) On the relevance of preferential increases of mesolimbic versus striatal dopamine turnover for the prediction of antipsychotic activity of psychotropic drugs. J Neurochem 27: 589–597

    Google Scholar 

  • Walters JR, Roth RH (1976) Dopaminergic neurons: an in vivo system for measuring drug interactions with presynaptic receptors. Naunyn Schmiedeberg's Arch Pharmacol 296: 5–14

    Google Scholar 

  • Weiss F, Ettenberg A (1986) Comparison of circling induced by unilateral intrastriatal microinjections of haloperidol, clozapine and CCK-8 in rats. Pharmacol Biochem Behav 24: 983–989

    Google Scholar 

  • Westerink BH (1978) Effect of centrally acting drugs on regional dopamine metabolism. Adv Biochem Psychopharmacol 19: 255–266

    Google Scholar 

  • Westerink BH, Korf J (1975) Influence of drugs on striatal and limbic homovanillic acid concentration in the rat brain. Eur J Pharmacol 33: 31–40

    Google Scholar 

  • Westerink BH, Lejeune B, Korf J, Van Praag HM (1977) On the significance of regional dopamine metabolism in the rat brain for the classification of centrally acting drugs. Eur J Pharmacol 42: 179–190

    Google Scholar 

  • Wettlaufer TA, Camacho F, Corbett R (1993) The atypical antipsychotic agent clozapine antagonizes the MK-801 discriminative stimulus cue. Soc Neurosci Abstr 19: 1391

    Google Scholar 

  • Wetzel H, Szegedi A, Hain C, Wiesner J, Schlegel S, Benkert O (1995) Seroquel (ICI 204 636), a putative “atypical” antipsychotic, in schizophrenia with positive symptomatology: results of an open clinical trial and changes of neuroendocrinological and EEG parameters. Psychopharmacology 119: 231–238

    Google Scholar 

  • White FJ, Wang RY (1983) Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science 221: 1054–1057

    Google Scholar 

  • Wiedemann K, Benkert O, Holsboer F (1990) B-HT 920-a novel dopamine autoreceptor agonist in the treatment of patients with schizophrenia. Pharmacopsychiatry 23: 50–55

    Google Scholar 

  • Wiesel FA, Sedvall G (1975) Effect of antipsychotic drugs on homovanillic acid levels in striatum and olfactory tubercle of the rat. Eur J Pharmacol 30: 364–367

    Google Scholar 

  • Wiesel FA, Nordstrom AL, Farde L, Eriksson B (1994) An open clinical and biochemical study of ritanserin in acute patients with schizophrenia. Psychopharmacology 114: 31–38

    Google Scholar 

  • Williams P (1990) An open trial of ondansetron (GR38032F) in the treatment of acute schizophrenia. Schizophr Res 3: 48

    Google Scholar 

  • Wilmot CA, Szczepanik AM (1989) Effects of acute and chronic treatments with clozapine and haloperidol on serotonin (5-HT2) and dopamine (D2) receptors in the rat brain. Brain Res 487: 288–298

    Google Scholar 

  • Wolk SI, Douglas CJ (1992) Clozapine treatment of psychosis in Parkinson's disease: a report of five consecutive cases. J Clin Psychiatry 53: 373–376

    Google Scholar 

  • Wolkin A, Sanfilipo M, Wolf AP, Angrist B, Brodie JD, Rotrosen J (1992) Negative symptoms and hypofrontality in chronic schizophrenia. Arch Gen Psychiatry 49: 959–65

    Google Scholar 

  • Wood PL, McQuade PS, Etienne P, Lal S, Nair NP (1983) Differential actions of classical and atypical neuroleptics on mouse nigrostriatal neurons. Prog Neuropsychopharmacol Biol Psychiatry 7: 765–768

    Google Scholar 

  • Woodruff GN, Kelly PH, Elkhawad AO (1976) Effects of dopamine receptor stimulants on locomotor activity of rats with electrolytic or 6-hydroxydopamine-induced lesions of the nucleus accumbens. Psychopharmacologia 47: 195–198

    Google Scholar 

  • Worms P, Willigens MT, Continsouza-Blanc D, Lloyd KG (1985) The effect of different types of cortical lesions on drug-in-duced catalepsy in rats: a pharmacological analysis. Eur J Pharmacol 113: 53–59

    Google Scholar 

  • Xu M, Hu XT, Cooper DC, Moratalla R, Graybiel AM, White FJ, Tonegawa S (1994) Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 79: 945–955

    Google Scholar 

  • Yamamoto BK, Cooperman MA (1992) Chronic treatment with antipsychotic drugs differentially affects extracellular concentrations of striatal glutamate and dopamine. Presented at the ACNP Annual Meeting, San Juan, PR

  • Yamamoto BK, Cooperman MA (1993) Chronic haloperidol alters sub stantia nigra GABA and extracellular glutamate in the striatum. Soc Neurosci Abstr 19: 1623

    Google Scholar 

  • Yamamoto BK, Cooperman MA (1994) Differential effects of chronic antipsychotic drug treatment on extracellular glutamate and dopamine concentrations. J Neurosci 14: 4159–4166

    Google Scholar 

  • Yen-Koo HC, Balazs T (1980) Detection of dopaminergic supersensitivity induced by neuroleptic drugs in mice. Drug Chem Toxicol 3: 237–247

    Google Scholar 

  • Young AB, Penney JB (1993) Biochemical and functional organization of the basal ganglia. In: Jankovic J, Tolosa E (eds) Parkinson's disease and movement disorders, 2nd edn. Williams & Wilkins, Baltimore, pp 1–11

    Google Scholar 

  • Youngren KD, Moghaddam B, Bunney BS, Roth RH (1994) Preferential activation of dopamine overflow in prefrontal cortex produced by chronic clozapine treatment. Neurosci Lett 165: 41–44

    Google Scholar 

  • Zivkovic G, Guidotti A, Revuelta A, Costa E (1975) Effect of thioridazine, clozapine and other antipsychotics in the kinetic state of tyrosine hydroxylase and on the turnover of dopamine in striatum and nucleus accumbens. J Pharmacol Exp Ther 194: 37–46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by the Mental Health Clinical Research Center for the Study of Schizophrenia (USPHS MH-41960)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinon, B.J., Lieberman, J.A. Mechanisms of action of atypical antipsychotic drugs: a critical analysis. Psychopharmacology 124, 2–34 (1996). https://doi.org/10.1007/BF02245602

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245602

Key words

Navigation