Skip to main content
Log in

Fumonisins: oxidative stress-mediated toxicity and metabolism in vivo and in vitro

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Fumonisins (FBs) are widespread Fusarium toxins commonly found as corn contaminants. FBs could cause a variety of diseases in animals and humans, such as hepatotoxic, nephrotoxic, hepatocarcinogenic and cytotoxic effects in mammals. To date, almost no review has addressed the toxicity of FBs in relation to oxidative stress and their metabolism. The focus of this article is primarily intended to summarize the progress in research associated with oxidative stress as a plausible mechanism for FB-induced toxicity as well as the metabolism. The present review showed that studies have been carried out over the last three decades to elucidate the production of reactive oxygen species (ROS) and oxidative stress as a result of FBs treatment and have correlated them with various types of FBs toxicity, indicating that oxidative stress plays critical roles in the toxicity of FBs. The major metabolic pathways of FBs are hydrolysis, acylation and transamination. Ceramide synthase, carboxylesterase FumD and aminotransferase FumI could degrade FB1 and FB2. The cecal microbiota of pigs and alkaline processing such as nixtamalization can also transform FB1 into metabolites. Most of the metabolites of FB1 were less toxic than FB1, except its partial (pHFB1) metabolites. Further understanding of the role of oxidative stress in FB-induced toxicity will throw new light on the use of antioxidants, scavengers of ROS, as well as on the blind spots of metabolism and the metabolizing enzymes of FBs. The present review might contribute to reveal the toxicity of FBs and help to protect against their oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

8-OH-dG:

8-Hydroxydeoxyguanosine

ALAT:

Alanine aminotransferase

aminopolyols:

Hydrolyzed fumonisins

ASAT:

Aspartate aminotransferase

CAT:

Catalase

CBMN:

Cytokinesis-block micronucleus assay

CHL:

Sodium copper chlorophyllin

CoQ10:

Coenzyme Q10

CYP1A1:

O-deethylation of ethoxyresorufin

CYP3A1:

N-demethylation of erythromycin

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

DON:

Deoxynivalenol

ERK:

Extracellular signal-regulated kinase

FB:

Fumonisin

FL:

Fluorescence detection

GE:

Ginseng extract

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GST:

Glutathione S-transferases

H2O2 :

Hydrogen peroxide

HFB1/2:

Hydrolyzed fumonisin B1 and/or B2

HPBLs:

Human peripheral blood lymphocytes

HPLC:

High-performance liquid chromatography

HO· :

Hydroxyl radical

HOO :

Perhydroxy radical

Hsps:

Heat shock proteins

HT29:

Human colonic cell line

IARC:

The International Agency for Research on Cancer

IHKE cells:

Human proximal tubule-derived cells

iNOS:

Inducible nitric oxide synthase

i.p.:

Intraperitoneally

JNK:

c-Jun N-terminal kinase

LAB:

Lactic acid bacteria

MAPKs:

Mitogen-activated protein kinases

MDA:

Malondialdehyde

MEF:

Mouse embryonic fibroblasts

Mn-PCEs:

Micronucleated polychromatic erythrocytes

MTA:

Methylthioadenosine

NCEs:

Normochromatic erythrocytes

NDF:

N-(1-deoxy-d-fructos-1-yl) fumonisin1

N-Pal-HFB1 (PAP1):

N-palmitoyl-hydrolyzed fumonisin1, NTD, neural tube defects

O ·−2 :

Superoxide anion

OTA:

Ochratoxin A

OTM:

Olive tail moment

PBMC:

Peripheral blood mononuclear cells

PCEs:

Polychromatic erythrocytes

PCs:

Protein carbonyls

PGE:

Panax ginseng extract

pHFB1:

Partially hydrolyzed FB1

RJ:

Royal jelly

RNS:

Reactive nitrogen species

ROM:

Reactive oxygen metabolites

ROS:

Reactive oxygen species

SAM:

S-adenosylmethionine

SCGE:

Alkaline comet assay

SMC:

Spleen mononuclear cells

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid-reacting substances

U-118MG:

Human U-118MG glioblastoma

ZEN:

Zearalenone

References

  • Abbes S, Ben Salah-Abbes J, Jebali R, Younes RB, Oueslati R (2015) Interaction of aflatoxin B and fumonisin B in mice causes immunotoxicity and oxidative stress: possible protective role using lactic acid bacteria. J Immunotoxicol. doi:10.3109/1547691X.2014.997905

    Google Scholar 

  • Abdel-Wahhab MA, Hassan NS, El-Kady AA et al (2010) Red ginseng extract protects against aflatoxin B1 and fumonisins-induced hepatic pre-cancerous lesions in rats. Food Chem Toxicol 48(2):733–742. doi:10.1016/j.fct.2009.12.006

    Article  PubMed  CAS  Google Scholar 

  • Abel S, Gelderblom WC (1998) Oxidative damage and fumonisin B1-induced toxicity in primary rat hepatocytes and rat liver in vivo. Toxicology 131(2–3):121–131

    Article  PubMed  CAS  Google Scholar 

  • Arranz I, Baeyens WR, Van der Weken G, De Saeger S, Van Peteghem C (2004) Review: HPLC determination of fumonisin mycotoxins. Crit Rev Food Sci Nutr 44(3):195–203. doi:10.1080/10408690490441604

    Article  PubMed  CAS  Google Scholar 

  • Atroshi F, Rizzo A, Biese I et al (1999) Fumonisin B1-induced DNA damage in rat liver and spleen: effects of pretreatment with coenzyme Q10, l-carnitine, alpha-tocopherol and selenium. Pharmacol Res 40(6):459–467. doi:10.1006/phrs.1999.0529

    Article  PubMed  CAS  Google Scholar 

  • Bernabucci U, Colavecchia L, Danieli PP et al (2011) Aflatoxin B1 and fumonisin B1 affect the oxidative status of bovine peripheral blood mononuclear cells. Toxicol In Vitro 25(3):684–691. doi:10.1016/j.tiv.2011.01.009

    Article  PubMed  CAS  Google Scholar 

  • Caloni F, Spotti M, Auerbach H, den Camp HO, Gremmels JF, Pompa G (2000) In vitro metabolism of fumonisin B1 by ruminal microflora. Vet Res Commun 24(6):379–387

    Article  PubMed  CAS  Google Scholar 

  • Caloni F, Spotti M, Pompa G, Zucco F, Stammati A, De Angelis I (2002) Evaluation of Fumonisin B(1) and its metabolites absorption and toxicity on intestinal cells line Caco-2. Toxicon 40(8):1181–1188

    Article  PubMed  CAS  Google Scholar 

  • Cheng YH, Ding ST, Chang MH (2006) Effect of fumonisins on macrophage immune functions and gene expression of cytokines in broilers. Arch Anim Nutr 60(4):267–276. doi:10.1080/17450390600785079

    Article  PubMed  CAS  Google Scholar 

  • Cig B, Naziroglu M (2015) Investigation of the effects of distance from sources on apoptosis, oxidative stress and cytosolic calcium accumulation via TRPV1 channels induced by mobile phones and Wi-Fi in breast cancer cells. Biochim Biophys Acta. doi:10.1016/j.bbamem.2015.02.013

    PubMed  Google Scholar 

  • Colvin BM, Harrison LR (1992) Fumonisin-induced pulmonary edema and hydrothorax in swine. Mycopathologia 117(1–2):79–82

    Article  PubMed  CAS  Google Scholar 

  • Creppy EE (2002) Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett 127(1–3):19–28

    Article  PubMed  CAS  Google Scholar 

  • Dall’Asta C, Mangia M, Berthiller F et al (2009) Difficulties in fumonisin determination: the issue of hidden fumonisins. Anal Bioanal Chem 395(5):1335–1345. doi:10.1007/s00216-009-2933-3

    Article  PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT, Talalay P (2008) Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res 52(Suppl 1):S128–S138. doi:10.1002/mnfr.200700195

    PubMed  Google Scholar 

  • Domijan AM, Abramov AY (2011) Fumonisin B1 inhibits mitochondrial respiration and deregulates calcium homeostasis—implication to mechanism of cell toxicity. Int J Biochem Cell Biol 43(6):897–904. doi:10.1016/j.biocel.2011.03.003

    Article  PubMed  CAS  Google Scholar 

  • Domijan AM, Zeljezic D, Kopjar N, Peraica M (2006) Standard and Fpg-modified comet assay in kidney cells of ochratoxin A- and fumonisin B(1)-treated rats. Toxicology 222(1–2):53–59. doi:10.1016/j.tox.2006.01.024

    Article  PubMed  CAS  Google Scholar 

  • Domijan AM, Peraica M, Vrdoljak AL, Radic B, Zlender V, Fuchs R (2007) The involvement of oxidative stress in ochratoxin A and fumonisin B1 toxicity in rats. Mol Nutr Food Res 51(9):1147–1151. doi:10.1002/mnfr.200700079

    Article  PubMed  CAS  Google Scholar 

  • Domijan A, Zeljezic D, Peraica M et al (2008) Early toxic effects of fumonisin B1 in rat liver. Hum Exp Toxicol 27(12):895–900. doi:10.1177/0960327108100418

    Article  PubMed  CAS  Google Scholar 

  • Domijan AM, Gajski G, Jovanovic IN, Geric M, Garaj-Vrhovac V (2015) In vitro genotoxicity of mycotoxins ochratoxin A and fumonisin B(1) could be prevented by sodium copper chlorophyllin—implication to their genotoxic mechanism. Food Chem 170:455–462. doi:10.1016/j.foodchem.2014.08.036

    Article  PubMed  CAS  Google Scholar 

  • El-Nekeety AA, El-Kholy W, Abbas NF, Ebaid A, Amra HA, Abdel-Wahhab MA (2007) Efficacy of royal jelly against the oxidative stress of fumonisin in rats. Toxicon 50(2):256–269. doi:10.1016/j.toxicon.2007.03.017

    Article  PubMed  CAS  Google Scholar 

  • Escobedo J, Pucci AM, Koh TJ (2004) HSP25 protects skeletal muscle cells against oxidative stress. Free Radic Biol Med 37(9):1455–1462. doi:10.1016/j.freeradbiomed.2004.07.024

    Article  PubMed  CAS  Google Scholar 

  • European Commission (2003) Updated opinion of the Scientific Committee on Food (SCF) on Fumonisin B1, B2 and B3. http://ec.europa.eu/food/fs/sc/scf/out185_en.pdf

  • Ferns G, Shams S, Shafi S (2006) Heat shock protein 27: its potential role in vascular disease. Int J Exp Pathol 87(4):253–274. doi:10.1111/j.1365-2613.2006.00484.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ferrante MC, Meli R, Mattace Raso G et al (2002) Effect of fumonisin B1 on structure and function of macrophage plasma membrane. Toxicol Lett 129(3):181–187

    Article  PubMed  CAS  Google Scholar 

  • Fodor J, Meyer K, Gottschalk C et al (2007) In vitro microbial metabolism of fumonisin B1. Food Addit Contam 24(4):416–420. doi:10.1080/02652030701216461

    Article  PubMed  CAS  Google Scholar 

  • Fu M, Li R, Guo C, Pang M, Liu Y, Dong J (2015) Natural incidence of Fusarium species and fumonisins B1 and B2 associated with maize kernels from nine provinces in China in 2012. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32(4):503–511. doi:10.1080/19440049.2014.976846

    Article  PubMed  CAS  Google Scholar 

  • Galvano F, Russo A, Cardile V, Galvano G, Vanella A, Renis M (2002) DNA damage in human fibroblasts exposed to fumonisin B(1). Food Chem Toxicol 40(1):25–31

    Article  PubMed  CAS  Google Scholar 

  • Gelderblom WC, Marasas WF, Vleggaar R, Thiel PG, Cawood ME (1992) Fumonisins: isolation, chemical characterization and biological effects. Mycopathologia 117(1–2):11–16

    Article  PubMed  CAS  Google Scholar 

  • Gelineau-van Waes J, Starr L, Maddox J et al (2005) Maternal fumonisin exposure and risk for neural tube defects: mechanisms in an in vivo mouse model. Birth Defects Res A 73(7):487–497. doi:10.1002/bdra.20148

    Article  CAS  Google Scholar 

  • Gelineau-van Waes J, Voss KA, Stevens VL, Speer MC, Riley RT (2009) Maternal fumonisin exposure as a risk factor for neural tube defects. Adv Food Nutr Res 56:145–181. doi:10.1016/S1043-4526(08)00605-0

    Article  PubMed  CAS  Google Scholar 

  • Gherbawy Y, Elhariry H, Kocsube S et al (2015) Molecular characterization of black Aspergillus species from onion and their potential for ochratoxin A and fumonisin B2 production. Foodborne Pathog Dis. doi:10.1089/fpd.2014.1870

    PubMed  Google Scholar 

  • Grenier B, Bracarense AP, Schwartz HE et al (2012) The low intestinal and hepatic toxicity of hydrolyzed fumonisin B(1) correlates with its inability to alter the metabolism of sphingolipids. Biochem Pharmacol 83(10):1465–1473. doi:10.1016/j.bcp.2012.02.007

    Article  PubMed  CAS  Google Scholar 

  • Hahn I, Nagl V, Schwartz-Zimmermann HE et al (2015) Effects of orally administered fumonisin B(1) (FB(1)), partially hydrolysed FB(1), hydrolysed FB(1) and N-(1-deoxy-d-fructos-1-yl) FB(1) on the sphingolipid metabolism in rats. Food Chem Toxicol 76:11–18. doi:10.1016/j.fct.2014.11.020

    Article  PubMed  CAS  Google Scholar 

  • Harrer H, Laviad EL, Humpf HU, Futerman AH (2013) Identification of N-acyl-fumonisin B1 as new cytotoxic metabolites of fumonisin mycotoxins. Mol Nutr Food Res 57(3):516–522. doi:10.1002/mnfr.201200465

    Article  PubMed  CAS  Google Scholar 

  • Harrer H, Humpf HU, Voss KA (2015) In vivo formation of N-acyl-fumonisin B1. Mycotoxin Res 31(1):33–40. doi:10.1007/s12550-014-0211-5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hartinger D, Schwartz H, Hametner C, Schatzmayr G, Haltrich D, Moll WD (2011) Enzyme characteristics of aminotransferase FumI of Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B(1). Appl Microbiol Biotechnol 91(3):757–768. doi:10.1007/s00253-011-3248-9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hassan AM, Mohamed SR, El-Nekeety AA, Hassan NS, Abdel-Wahhab MA (2010) Aquilegia vulgaris L. extract counteracts oxidative stress and cytotoxicity of fumonisin in rats. Toxicon 56(1):8–18. doi:10.1016/j.toxicon.2010.03.006

    Article  PubMed  CAS  Google Scholar 

  • Hassan AM, Abdel-Aziem SH, El-Nekeety AA, Abdel-Wahhab MA (2014) Panax ginseng extract modulates oxidative stress, DNA fragmentation and up-regulate gene expression in rats sub chronically treated with aflatoxin B and fumonisin B. Cytotechnology. doi:10.1007/s10616-014-9726-z

    Google Scholar 

  • He Q, Suzuki H, Sharma RP (2006) S-adenosylmethionine or 5′-methylthioadenosine are unable to prevent fumonisin B1 hepatotoxicity in mice despite increased oxidation in liver. J Appl Toxicol 26(6):509–516. doi:10.1002/jat.1170

    Article  PubMed  CAS  Google Scholar 

  • Hendrich S, Miller KA, Wilson TM, Murphy PA (1993) Toxicity of Fusarium proliferatum fermented nixtamalized corn-based diets feed to rats: effect of nutritional status. J Agric Food Chem 41:1649–1654

    Article  CAS  Google Scholar 

  • Higuchi Y (2003) Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem Pharmacol 66(8):1527–1535. doi:10.1016/S0006-2952(03)00508-2

    Article  PubMed  CAS  Google Scholar 

  • Howard PC, Couch LH, Patton RE et al (2002) Comparison of the toxicity of several fumonisin derivatives in a 28-day feeding study with female B6C3F(1) mice. Toxicol Appl Pharmacol 185(3):153–165

    Article  PubMed  CAS  Google Scholar 

  • Humpf HU, Schmelz EM, Meredith FI et al (1998) Acylation of naturally occurring and synthetic 1-deoxysphinganines by ceramide synthase. Formation of N-palmitoyl-aminopentol produces a toxic metabolite of hydrolyzed fumonisin, AP1, and a new category of ceramide synthase inhibitor. J Biol Chem 273(30):19060–19064

    Article  PubMed  CAS  Google Scholar 

  • Ihsan A, Wang X, Liu Z et al (2011) Long-term mequindox treatment induced endocrine and reproductive toxicity via oxidative stress in male Wistar rats. Toxicol Appl Pharmacol 252(3):281–288. doi:10.1016/j.taap.2011.02.020

    Article  PubMed  CAS  Google Scholar 

  • International Agency for Research on Cancer (IARC) (2002) Fumonisin B1. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. Monographs on the evaluation of carcinogenic risks to humans, vol 82. IARC, Lyon, pp 301–366. doi:10.1016/j.fct.2009.12.006

    Google Scholar 

  • Kang YJ, Alexander JM (1996) Alterations of the glutathione redox cycle status in fumonisin B1-treated pig kidney cells. J Biochem Toxicol 11(3):121–126

    Article  PubMed  CAS  Google Scholar 

  • Klaric MS, Pepeljnjak S, Domijan AM, Petrik J (2007) Lipid peroxidation and glutathione levels in porcine kidney PK15 cells after individual and combined treatment with fumonisin B(1), beauvericin and ochratoxin A. Basic Clin Pharmacol Toxicol 100(3):157–164. doi:10.1111/j.1742-7843.2006.00019.x

    Article  PubMed  CAS  Google Scholar 

  • Kotan E, Alpsoy L, Anar M, Aslan A, Agar G (2011) Protective role of methanol extract of Cetraria islandica (L.) against oxidative stress and genotoxic effects of AFB(1) in human lymphocytes in vitro. Toxicol Ind Health 27(7):599–605. doi:10.1177/0748233710394234

    Article  PubMed  CAS  Google Scholar 

  • Kouadio JH, Mobio TA, Baudrimont I, Moukha S, Dano SD, Creppy EE (2005) Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. Toxicology 213(1–2):56–65. doi:10.1016/j.tox.2005.05.010

    Article  PubMed  CAS  Google Scholar 

  • Li F, Jiang D, Zheng F, Chen J, Li W (2015a) Fumonisins B, B and B in corn products, wheat flour and corn oil marketed in Shandong province of China. Food Addit Contam Part B Surveill. doi:10.1080/19393210.2015.1028480

    Google Scholar 

  • Li R, Guo C, Zhang Q, Pang M, Liu Y, Dong J (2015b) Fumonisins B1 and B2 in maize harvested in Hebei province, China, during 2011–2013. Food Addit Contam Part B Surveill 8(1):1–6. doi:10.1080/19393210.2014.940401

    Article  PubMed  CAS  Google Scholar 

  • Logrieco A, Ferracane R, Visconti A, Ritieni A (2010) Natural occurrence of fumonisin B2 in red wine from Italy. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27(8):1136–1141. doi:10.1080/19440041003716547

    Article  PubMed  CAS  Google Scholar 

  • Mansson M, Klejnstrup ML, Phipps RK et al (2010) Isolation and NMR characterization of fumonisin B2 and a new fumonisin B6 from Aspergillus niger. J Agric Food Chem 58(2):949–953. doi:10.1021/jf902834g

    Article  PubMed  CAS  Google Scholar 

  • Marasas WF, Riley RT, Hendricks KA et al (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134(4):711–716

    PubMed  CAS  Google Scholar 

  • Marin S, Ramos AJ, Vazquez C, Sanchis V (2007) Contamination of pine nuts by fumonisin produced by strains of Fusarium proliferatum isolated from Pinus pinea. Lett Appl Microbiol 44(1):68–72. doi:10.1111/j.1472-765X.2006.02028.x

    Article  PubMed  CAS  Google Scholar 

  • Marnewick JL, van der Westhuizen FH, Joubert E, Swanevelder S, Swart P, Gelderblom WC (2009) Chemoprotective properties of rooibos (Aspalathus linearis), honeybush (Cyclopia intermedia) herbal and green and black (Camellia sinensis) teas against cancer promotion induced by fumonisin B1 in rat liver. Food Chem Toxicol 47(1):220–229. doi:10.1016/j.fct.2008.11.004

    Article  PubMed  CAS  Google Scholar 

  • Marschik S, Hepperle J, Lauber U et al (2013) Extracting fumonisins from maize: efficiency of different extraction solvents in multi-mycotoxin analytics. Mycotoxin Res 29(2):119–129. doi:10.1007/s12550-013-0163-1

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Larrañaga MR, Anadon A, Diaz MJ et al (1996) Induction of cytochrome P4501A1 and P4504A1 activities and peroxisomal proliferation by fumonisin B1. Toxicol Appl Pharmacol 141(1):185–194. doi:10.1006/taap.1996.0275

    Article  PubMed  Google Scholar 

  • Martins ML, Martins HM, Bernardo F (2001) Fumonisins B1 and B2 in black tea and medicinal plants. J Food Prot 64(8):1268–1270

    PubMed  CAS  Google Scholar 

  • Mary VS, Theumer MG, Arias SL, Rubinstein HR (2012) Reactive oxygen species sources and biomolecular oxidative damage induced by aflatoxin B1 and fumonisin B1 in rat spleen mononuclear cells. Toxicology 302(2–3):299–307. doi:10.1016/j.tox.2012.08.012

    Article  PubMed  CAS  Google Scholar 

  • Mateo JJ, Jimenez M (2000) Trichothecenes and fumonisins produced in autoclaved tiger nuts by strains of Fusarium sporotrichioides and Fusarium moniliforme. Food Microbiol 17(2):167–176. doi:10.1006/fmic.1999.0301

    Article  CAS  Google Scholar 

  • Matsuzawa A, Ichijo H (2005) Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxid Redox Signal 7(3–4):472–481. doi:10.1089/ars.2005.7.472

    Article  PubMed  CAS  Google Scholar 

  • Minervini F, Garbetta A, D’Antuono I et al (2014) Toxic mechanisms induced by fumonisin b1 mycotoxin on human intestinal cell line. Arch Environ Contam Toxicol 67(1):115–123. doi:10.1007/s00244-014-0004-z

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Dwivedi PD, Pandey HP, Das M (2014) Role of oxidative stress in Deoxynivalenol induced toxicity. Food Chem Toxicol 72:20–29. doi:10.1016/j.fct.2014.06.027

    Article  PubMed  CAS  Google Scholar 

  • Mobio TA, Tavan E, Baudrimont I et al (2003) Comparative study of the toxic effects of fumonisin B1 in rat C6 glioma cells and p53-null mouse embryo fibroblasts. Toxicology 183(1–3):65–75

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KF, Ngemela AF, Jensen LB, de Medeiros LS, Rasmussen PH (2015) UHPLC-MS/MS determination of ochratoxin A and fumonisins in coffee using QuEChERS extraction combined with mixed-mode SPE purification. J Agric Food Chem 63(3):1029–1034. doi:10.1021/jf504254q

    Article  PubMed  CAS  Google Scholar 

  • Pagliuca G, Zironi E, Ceccolini A, Matera R, Serrazanetti GP, Piva A (2005) Simple method for the simultaneous isolation and determination of fumonisin B1 and its metabolite aminopentol-1 in swine liver by liquid chromatography—fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 819(1):97–103. doi:10.1016/j.jchromb.2005.01.035

    Article  PubMed  CAS  Google Scholar 

  • Perrone G, De Girolamo A, Sarigiannis Y, Haidukowski ME, Visconti A (2013) Occurrence of ochratoxin A, fumonisin B2 and black aspergilli in raisins from Western Greece regions in relation to environmental and geographical factors. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30(7):1339–1347. doi:10.1080/19440049.2013.796594

    Article  PubMed  CAS  Google Scholar 

  • Pirinccioglu AG, Gokalp D, Pirinccioglu M, Kizil G, Kizil M (2010) Malondialdehyde (MDA) and protein carbonyl (PCO) levels as biomarkers of oxidative stress in subjects with familial hypercholesterolemia. Clin Biochem 43(15):1220–1224. doi:10.1016/j.clinbiochem.2010.07.022

    Article  PubMed  CAS  Google Scholar 

  • Poersch AB, Trombetta F, Braga AC et al (2014) Involvement of oxidative stress in subacute toxicity induced by fumonisin B1 in broiler chicks. Vet Microbiol 174(1–2):180–185. doi:10.1016/j.vetmic.2014.08.020

    Article  PubMed  CAS  Google Scholar 

  • Ramesh T, Kim SW, Hwang SY, Sohn SH, Yoo SK, Kim SK (2012a) Panax ginseng reduces oxidative stress and restores antioxidant capacity in aged rats. Nutr Res 32(9):718–726. doi:10.1016/j.nutres.2012.08.005

    Article  PubMed  CAS  Google Scholar 

  • Ramesh T, Kim SW, Sung JH et al (2012b) Effect of fermented Panax ginseng extract (GINST) on oxidative stress and antioxidant activities in major organs of aged rats. Exp Gerontol 47(1):77–84. doi:10.1016/j.exger.2011.10.007

    Article  PubMed  CAS  Google Scholar 

  • Raynal M, Bailly JD, Benard G, Guerre P (2001) Effects of fumonisin B1 present in Fusarium moniliforme culture material on drug metabolising enzyme activities in ducks. Toxicol Lett 121(3):179–190

    Article  PubMed  CAS  Google Scholar 

  • Rheeder JP, Marasas WFO, Thiel TG, Sydenham EW, Shephard GS, Van Schalkwyk DJ (1992) Fusarium moniliforme and fumonisins in corn in relation to human esophageal cancer in Transkei. Phytopathology 82:353–357

    Article  Google Scholar 

  • Riet-Correa F, Rivero R, Odriozola E, Adrien Mde L, Medeiros RM, Schild AL (2013) Mycotoxicoses of ruminants and horses. J Vet Diagn Invest 25(6):692–708. doi:10.1177/1040638713504572

    Article  PubMed  Google Scholar 

  • Ross PF, Nelson PE, Owens DL, Rice LG, Nelson HA, Wilson TM (1994) Fumonisin B2 in cultured Fusarium proliferatum, M-6104, causes equine leukoencephalomalacia. J Vet Diagn Invest 6(2):263–265

    Article  PubMed  CAS  Google Scholar 

  • Rumora L, Domijan AM, Grubisic TZ, Peraica M (2007) Mycotoxin fumonisin B1 alters cellular redox balance and signalling pathways in rat liver and kidney. Toxicology 242(1–3):31–38. doi:10.1016/j.tox.2007.09.006

    Article  PubMed  CAS  Google Scholar 

  • Sadler TW, Merrill AH, Stevens VL, Sullards MC, Wang E, Wang P (2002) Prevention of fumonisin B1-induced neural tube defects by folic acid. Teratology 66(4):169–176. doi:10.1002/tera.10089

    Article  PubMed  CAS  Google Scholar 

  • Scott PM (2012) Recent research on fumonisins: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29(2):242–248. doi:10.1080/19440049.2010.546000

    Article  PubMed  CAS  Google Scholar 

  • Seefelder W, Humpf HU, Schwerdt G, Freudinger R, Gekle M (2003) Induction of apoptosis in cultured human proximal tubule cells by fumonisins and fumonisin metabolites. Toxicol Appl Pharmacol 192(2):146–153

    Article  PubMed  CAS  Google Scholar 

  • Seiferlein M, Humpf HU, Voss KA et al (2007) Hydrolyzed fumonisins HFB1 and HFB2 are acylated in vitro and in vivo by ceramide synthase to form cytotoxic N-acyl-metabolites. Mol Nutr Food Res 51(9):1120–1130. doi:10.1002/mnfr.200700118

    Article  PubMed  CAS  Google Scholar 

  • Seo DG, Phat C, Kim DH, Lee C (2013) Occurrence of Fusarium mycotoxin fumonisin B1 and B2 in animal feeds in Korea. Mycotoxin Res 29(3):159–167. doi:10.1007/s12550-013-0172-0

    Article  PubMed  CAS  Google Scholar 

  • Shephard GS, Van Der Westhuizen L, Sewram V (2007) Biomarkers of exposure to fumonisin mycotoxins: a review. Food Addit Contam 24(10):1196–1201. doi:10.1080/02652030701513818

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Sun B, Shi W et al (2015) Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumour Biol 36(2):655–662. doi:10.1007/s13277-014-2644-z

    Article  PubMed  CAS  Google Scholar 

  • Smith GW, Constable PD, Tumbleson ME, Rottinghaus GE, Haschek WM (1999) Sequence of cardiovascular changes leading to pulmonary edema in swine fed culture material containing fumonisin. Am J Vet Res 60(10):1292–1300

    PubMed  CAS  Google Scholar 

  • Sorensen LM, Lametsch R, Andersen MR, Nielsen PV, Frisvad JC (2009) Proteome analysis of Aspergillus niger: lactate added in starch-containing medium can increase production of the mycotoxin fumonisin B2 by modifying acetyl-CoA metabolism. BMC Microbiol 9:255. doi:10.1186/1471-2180-9-255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spotti M, Pompa G, Caloni F (2001) Fumonisin B1 metabolism by bovine liver microsomes. Vet Res Commun 25(6):511–516

    Article  PubMed  CAS  Google Scholar 

  • Stockmann-Juvala H, Savolainen K (2008) A review of the toxic effects and mechanisms of action of fumonisin B1. Hum Exp Toxicol 27(11):799–809. doi:10.1177/0960327108099525

    Article  PubMed  CAS  Google Scholar 

  • Stockmann-Juvala H, Mikkola J, Naarala J, Loikkanen J, Elovaara E, Savolainen K (2004a) Oxidative stress induced by fumonisin B1 in continuous human and rodent neural cell cultures. Free Radic Res 38(9):933–942. doi:10.1080/10715760412331273205

    Article  PubMed  CAS  Google Scholar 

  • Stockmann-Juvala H, Mikkola J, Naarala J, Loikkanen J, Elovaara E, Savolainen K (2004b) Fumonisin B1-induced toxicity and oxidative damage in U-118MG glioblastoma cells. Toxicology 202(3):173–183. doi:10.1016/j.tox.2004.05.002

    Article  PubMed  CAS  Google Scholar 

  • Sun GJ, Wang SK, Wang JS (2006) The combined toxity of two kinds of mycotoxin in Sprague–Dawley rats. Zhonghua yu fang yi xue za zhi (Chinese J Prev Med) 40(5):319–323

    CAS  Google Scholar 

  • Theumer MG, Lopez AG, Masih DT, Chulze SN, Rubinstein HR (2002) Immunobiological effects of fumonisin B1 in experimental subchronic mycotoxicoses in rats. Clin Diagn Lab Immunol 9(1):149–155

    PubMed  CAS  PubMed Central  Google Scholar 

  • Theumer MG, Lopez AG, Masih DT, Chulze SN, Rubinstein HR (2003) Immunobiological effects of AFB1 and AFB1-FB1 mixture in experimental subchronic mycotoxicoses in rats. Toxicology 186(1–2):159–170

    Article  PubMed  CAS  Google Scholar 

  • Theumer MG, Canepa MC, Lopez AG, Mary VS, Dambolena JS, Rubinstein HR (2010) Subchronic mycotoxicoses in Wistar rats: assessment of the in vivo and in vitro genotoxicity induced by fumonisins and aflatoxin B(1), and oxidative stress biomarkers status. Toxicology 268(1–2):104–110. doi:10.1016/j.tox.2009.12.007

    Article  PubMed  CAS  Google Scholar 

  • Voss KA, Bacon CW, Meredith FI, Norred WP (1996) Comparative subchronic toxicity studies of nixtamalized and water-extracted Fusarium moniliforme culture material. Food Chem Toxicol 34(7):623–632

    Article  PubMed  CAS  Google Scholar 

  • Voss KA, Smith GW, Haschek WM (2007) Fumonisins: toxicokinetics, mechanism of action and toxicity. Anim Feed Sci Tech 137(3–4):299–325. doi:10.1016/j.anifeedsci.2007.06.007

    Article  CAS  Google Scholar 

  • Voss KA, Riley RT, Snook ME, Waes JG (2009) Reproductive and sphingolipid metabolic effects of fumonisin B(1) and its alkaline hydrolysis product in LM/Bc mice: hydrolyzed fumonisin B(1) did not cause neural tube defects. Toxicol Sci 112(2):459–467. doi:10.1093/toxsci/kfp215

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wei H, Ma J, Luo X (2000) The fumonisin B1 content in corn from North China, a high-risk area of esophageal cancer. J Environ Pathol Toxicol Oncol 19(1–2):139–141

    PubMed  CAS  Google Scholar 

  • Wang X, Liu Q, Ihsan A et al (2012) JAK/STAT pathway plays a critical role in the proinflammatory gene expression and apoptosis of RAW264.7 cells induced by trichothecenes as DON and T-2 toxin. Toxicol Sci 127(2):412–424. doi:10.1093/toxsci/kfs106

    Article  PubMed  CAS  Google Scholar 

  • Wu QH, Wang X, Yang W et al (2014) Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: an update. Arch Toxicol 88(7):1309–1326. doi:10.1007/s00204-014-1280-0

    Article  PubMed  CAS  Google Scholar 

  • Yang HY, Lee TH (2015) Antioxidant enzymes as redox-based biomarkers: a brief review. BMB Rep 48(4):200–208

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T (1997) Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385(6617):637–640. doi:10.1038/385637a0

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Sun W, Zhao M (2015) Controlled formation of emulsion gels stabilized by salted myofibrillar protein under malondialdehyde (MDA)-induced oxidative stress. J Agric Food Chem 63(14):3766–3777. doi:10.1021/jf505916f

    Article  PubMed  CAS  Google Scholar 

  • Zitomer NC, Mitchell T, Voss KA et al (2009) Ceramide synthase inhibition by fumonisin B1 causes accumulation of 1-deoxysphinganine: a novel category of bioactive 1-deoxysphingoid bases and 1-deoxydihydroceramides biosynthesized by mammalian cell lines and animals. J Biol Chem 284(8):4786–4795. doi:10.1074/jbc.M808798200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM (2015) Biological and physiological role of ROS-the good, the bad and the ugly. Acta Physiol. doi:10.1111/apha.12515

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from 948 of the Ministry of Agriculture Project (2014-S12), International Cooperation Project (4002-122002), National Basic Research Program of China (2009C118800), Project of Excellence FIM UHK and Project Ref. S2013/ABI-2728 (ALIBIRD-CM Program) from Comunidad de Madrid, Spain.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arturo Anadón or Zonghui Yuan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wu, Q., Wan, D. et al. Fumonisins: oxidative stress-mediated toxicity and metabolism in vivo and in vitro. Arch Toxicol 90, 81–101 (2016). https://doi.org/10.1007/s00204-015-1604-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1604-8

Keywords

Navigation