Skip to main content

Advertisement

Log in

Biomarkers of lipid peroxidation in Alzheimer disease (AD): an update

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Increasing evidence suggests that free radical-mediated oxidation of biological substrates is a key feature of Alzheimer’s disease (AD) pathogenesis. While it has long been established that biomarkers of lipid peroxidation (LPO) are elevated in AD brain as well as ventricular CSF postmortem, more recent studies have demonstrated increased LPO biomarkers in postmortem brain from subjects with mild cognitive impairment, the earliest clinically detectable phase of dementia and preclinical AD, the earliest detectable pathological phase. Furthermore, multiple LPO biomarkers are elevated in readily accessible biological fluids throughout disease progression. Collectively, these studies demonstrate that LPO is an early feature during disease progression and may be considered a key pathway for targeted therapeutics as well as an enhancer of diagnostic accuracy for early detection of subjects during the prodromal phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aluise CD, Robinson RA, Beckett TL et al (2010) Preclinical Alzheimer disease: brain oxidative stress, Abeta peptide and proteomics. Neurobiol Dis 39(2):221–228. doi:10.1016/j.nbd.2010.04.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ando Y, Brannstrom T, Uchida K et al (1998) Histochemical detection of 4-hydroxynonenal protein in Alzheimer amyloid. J Neurol Sci 156(2):172–176

    Article  CAS  PubMed  Google Scholar 

  • Aybek H, Ercan F, Aslan D, Sahiner T (2007) Determination of malondialdehyde, reduced glutathione levels and APOE4 allele frequency in late-onset Alzheimer’s disease in Denizli Turkey. Clin Biochem 40(3–4):172–176. doi:10.1016/j.clinbiochem.2006.09.005

    Article  CAS  PubMed  Google Scholar 

  • Bradley MA, Markesbery WR, Lovell MA (2010) Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic Biol Med 48:1570–1576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradley MA, Xiong-Fister S, Markesbery WR, Lovell MA (2012) Elevated 4-hydroxyhexenal in Alzheimer’s disease (AD) progression. Neurobiol Aging 33:10. doi:10.1016/j.neurobiolaging.2010.08.016

    Article  Google Scholar 

  • Burcham PC (1998) Genotoxic lipid peroxidation products: their DNA damaging properties and role in formation of endogenous DNA adducts. Mutagenesis 13(3):287–305

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Kanski J (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122(9):945–962

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23(5):655–664

    Article  PubMed  Google Scholar 

  • Butterfield DA, Reed T, Perluigi M et al (2006) Elevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment. Neurosci Lett 397(3):170–173. doi:10.1016/j.neulet.2005.12.017

    Article  CAS  PubMed  Google Scholar 

  • Calingasan NY, Uchida K, Gibson GE (1999a) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 72(2):751–756

    Article  CAS  PubMed  Google Scholar 

  • Calingasan NY, Uchida K, Gibson GE (1999b) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 72(2):751–756

    Article  CAS  PubMed  Google Scholar 

  • Casado A, Encarnacion Lopez-Fernandez M, Concepcion Casado M, de La Torre R (2008) Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res 33(3):450–458. doi:10.1007/s11064-007-9453-3

    Article  CAS  PubMed  Google Scholar 

  • Cervellati C, Romani A, Seripa D et al (2014) Systemic oxidative stress and conversion to dementia of elderly patients with mild cognitive impairment. BioMed Res Int 2014:309507. doi:10.1155/2014/309507

    PubMed Central  PubMed  Google Scholar 

  • Chang YT, Chang WN, Tsai NW et al (2014) The roles of biomarkers of oxidative stress and antioxidant in Alzheimer’s disease: a systematic review. BioMed research international 2014:182303. doi:10.1155/2014/182303

    PubMed Central  PubMed  Google Scholar 

  • Dalle-Donne I, Scaloni A, Giustarini D et al (2005) Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom Rev 24(1):55–99. doi:10.1002/mas.20006

    Article  CAS  PubMed  Google Scholar 

  • Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis NMCD 15(4):316–328. doi:10.1016/j.numecd.2005.05.003

    Article  Google Scholar 

  • DiCiero MM, de Bruin VM, Vale MR, Viana GS (2000) Lipid peroxidation and nitrite plus nitrate levels in brain tissue from patients with Alzheimer’s disease. Gerontology 46(4):179–184

    Article  Google Scholar 

  • Fam SS, Murphey LJ, Terry ES et al (2002) Formation of highly reactive A-ring and J-ring isoprostane-like compounds (A4/J4-neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem 277(39):36076–36084. doi:10.1074/jbc.M205638200

    Article  CAS  PubMed  Google Scholar 

  • Feillet-Coudray C, Tourtauchaux R, Niculescu M et al (1999) Plasma levels of 8-epiPGF2alpha, an in vivo marker of oxidative stress, are not affected by aging or Alzheimer’s disease. Free Radic Biol Med 27(3–4):463–469

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Kanou F, Shimada N et al (2009) Elevated levels of 4-hydroxynonenal-histidine Michael adduct in the hippocampi of patients with Alzheimer’s disease. Biomed Res 30(4):227–233

    Article  CAS  PubMed  Google Scholar 

  • Gotz ME, Wacker M, Luckhaus C et al (2002) Unaltered brain levels of 1, N 2-propanodeoxyguanosine adducts of trans-4-hydroxy-2-nonenal in Alzheimer’s disease. Neurosci Lett 324(1):49–52

    Article  CAS  PubMed  Google Scholar 

  • Guan JZ, Guan WP, Maeda T, Makino N (2012) Effect of vitamin E administration on the elevated oxygen stress and the telomeric and subtelomeric status in Alzheimer’s disease. Gerontology 58(1):62–69. doi:10.1159/000327821

    Article  CAS  PubMed  Google Scholar 

  • Gustaw-Rothenberg K, Kowalczuk K, Stryjecka-Zimmer M (2010) Lipids’ peroxidation markers in Alzheimer’s disease and vascular dementia. Geriatr Gerontol Int 10(2):161–166. doi:10.1111/j.1447-0594.2009.00571.x

    PubMed  Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5 Suppl):715S–724S (discussion 724S–725S)

    CAS  PubMed  Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142(2):231–255. doi:10.1038/sj.bjp.0705776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  CAS  PubMed  Google Scholar 

  • Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80(19):1778–1783. doi:10.1212/WNL.0b013e31828726f5

    Article  PubMed Central  PubMed  Google Scholar 

  • Jack CR Jr, Weigand SD, Shiung MM et al (2008) Atrophy rates accelerate in amnestic mild cognitive impairment. Neurology 70(19 Pt 2):1740–1752. doi:10.1212/01.wnl.0000281688.77598.35

    Article  PubMed Central  PubMed  Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30(6):620–650

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Lovell MA, Lynn BC (2006) Detection and quantification of endogenous cyclic DNA adducts derived from trans-4-hydroxy-2-nonenal in human brain tissue by isotope dilution capillary liquid chromatography nanoelectrospray tandem mass spectrometry. Chem Res Toxicol 19(5):710–718. doi:10.1021/tx0502903

    Article  CAS  PubMed  Google Scholar 

  • Long EK, Picklo MJ Sr (2010) Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: make some room HNE. Free Radic Biol Med 49(1):1–8. doi:10.1016/j.freeradbiomed.2010.03.015

    Article  CAS  PubMed  Google Scholar 

  • LoPachin RM, Gavin T, Petersen DR, Barber DS (2009) Molecular mechanisms of 4-hydroxy-2-nonenal and acrolein toxicity: nucleophilic targets and adduct formation. Chem Res Toxicol 22(9):1499–1508. doi:10.1021/tx900147g

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lovell MA, Markesbery WR (2007) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res 35(22):7497–7504. doi:10.1093/nar/gkm821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lovell MA, Ehmann WD, Butler SM, Markesbery WR (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 45(8):1594–1601

    Article  CAS  PubMed  Google Scholar 

  • Lovell MA, Ehmann WD, Mattson MP, Markesbery WR (1997) Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease. Neurobiol Aging 18(5):457–461

    Article  CAS  PubMed  Google Scholar 

  • Lovell MA, Xie C, Markesbery WR (2001) Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol Aging 22(2):187–194

    Article  CAS  PubMed  Google Scholar 

  • Lyras L, Cairns NJ, Jenner A, Jenner P, Halliwell B (1997) An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease. J Neurochem 68(5):2061–2069

    Article  CAS  PubMed  Google Scholar 

  • Markesbery WR, Lovell MA (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 19(1):33–36

    Article  CAS  PubMed  Google Scholar 

  • Markesbery WR, Lovell MA (2006) DNA oxidation in Alzheimer’s disease. Antioxid Redox Signal 8(11–12):2039–2045. doi:10.1089/ars.2006.8.2039

    Article  CAS  PubMed  Google Scholar 

  • Markesbery WR, Kryscio RJ, Lovell MA, Morrow JD (2005) Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann Neurol 58:730–735

    Article  CAS  PubMed  Google Scholar 

  • Martin-Aragon S, Bermejo-Bescos P, Benedi J et al (2009) Metalloproteinase’s activity and oxidative stress in mild cognitive impairment and Alzheimer’s disease. Neurochem Res 34(2):373–378. doi:10.1007/s11064-008-9789-3

    Article  CAS  PubMed  Google Scholar 

  • McGrath LT, McGleenon BM, Brennan S, McColl D, Mc IS, Passmore AP (2001) Increased oxidative stress in Alzheimer’s disease as assessed with 4-hydroxynonenal but not malondialdehyde. QJM 94(9):485–490

    Article  CAS  PubMed  Google Scholar 

  • Mizoi M, Yoshida M, Saiki R et al (2014) Distinction between mild cognitive impairment and Alzheimer’s disease by CSF amyloid beta40 and beta42, and protein-conjugated acrolein. Clin Chim Acta 430:150–155. doi:10.1016/j.cca.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  • Montine KS, Kim PJ, Olson SJ, Markesbery WR, Montine TJ (1997a) 4-hydroxy-2-nonenal pyrrole adducts in human neurodegenerative disease. J Neuropathol Exp Neurol 56(8):866–871

    Article  CAS  PubMed  Google Scholar 

  • Montine KS, Olson SJ, Amarnath V, Whetsell WO Jr, Graham DG, Montine TJ (1997b) Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer’s disease is associated with inheritance of APOE4. Am J Pathol 150(2):437–443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Montine TJ, Markesbery WR, Zackert W, Sanchez SC, Roberts LJ 2nd, Morrow JD (1999) The magnitude of brain lipid peroxidation correlates with the extent of degeneration but not with density of neuritic plaques or neurofibrillary tangles or with APOE genotype in Alzheimer’s disease patients. Am J Pathol 155(3):863–868. doi:10.1016/S0002-9440(10)65185-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Montine TJ, Neely MD, Quinn JF et al (2002) Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radic Biol Med 33(5):620–626

    Article  CAS  PubMed  Google Scholar 

  • Moreira PI, Nunomura A, Nakamura M et al (2008) Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med 44(8):1493–1505. doi:10.1016/j.freeradbiomed.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  • Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ 2nd (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 87(23):9383–9387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mufson EJ, Leurgans S (2010) Inability of plasma and urine F2A-isoprostane levels to differentiate mild cognitive impairment from Alzheimer’s disease. Neurodegener Dis 7(1–3):139–142. doi:10.1159/000289224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Musiek ES, Cha JK, Yin H et al (2004) Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay. J Chromatogr B Analyt Technol Biomed Life Sci 799(1):95–102

    Article  CAS  PubMed  Google Scholar 

  • Nourooz-Zadeh J, Liu EH, Yhlen B, Anggard EE, Halliwell B (1999) F4-isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer’s disease. J Neurochem 72(2):734–740

    Article  CAS  PubMed  Google Scholar 

  • Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C (2010) Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 469(1):6–10. doi:10.1016/j.neulet.2009.11.033

    Article  CAS  PubMed  Google Scholar 

  • Palmer AM, Burns MA (1994) Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer’s disease. Brain Res 645(1–2):338–342

    Article  CAS  PubMed  Google Scholar 

  • Perluigi M, Sultana R, Cenini G et al (2009) Redox proteomics identification of 4-hydroxynonenal-modified brain proteins in Alzheimer’s disease: role of lipid peroxidation in Alzheimer’s disease pathogenesis. Proteomics Clin Appl 3(6):682–693. doi:10.1002/prca.200800161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56(3):303–308

    Article  CAS  PubMed  Google Scholar 

  • Polidori MC, Mattioli P, Aldred S et al (2004) Plasma antioxidant status, immunoglobulin g oxidation and lipid peroxidation in demented patients: relevance to Alzheimer disease and vascular dementia. Dement Geriatr Cogn Disord 18(3–4):265–270. doi:10.1159/000080027

    Article  CAS  PubMed  Google Scholar 

  • Pratico D, Lee VMY, Trojanowski JQ, Rokach J, Fitzgerald GA (1998) Increased F2-isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidation in vivo. FASEB J 12(15):1777–1783

    CAS  PubMed  Google Scholar 

  • Pratico D, Clark CM, Lee VM, Trojanowski JQ, Rokach J, FitzGerald GA (2000) Increased 8,12-iso-iPF2alpha-VI in Alzheimer’s disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Ann Neurol 48(5):809–812

    Article  CAS  PubMed  Google Scholar 

  • Pratico D, Clark CM, Liun F, Rokach J, Lee VY, Trojanowski JQ (2002) Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 59(6):972–976

    Article  PubMed  Google Scholar 

  • Puertas MC, Martinez-Martos JM, Cobo MP, Carrera MP, Mayas MD, Ramirez-Exposito MJ (2012) Plasma oxidative stress parameters in men and women with early stage Alzheimer type dementia. Exp Gerontol 47(8):625–630. doi:10.1016/j.exger.2012.05.019

    Article  CAS  PubMed  Google Scholar 

  • Pulliam JF, Jennings CD, Kryscio RJ et al (2003) Association of HFE mutations with neurodegeneration and oxidative stress in Alzheimer’s disease and correlation with APOE. Am J Med Genet B Neuropsychiatr Genet 119B(1):48–53. doi:10.1002/ajmg.b.10069

    Article  PubMed  Google Scholar 

  • Ramassamy C, Averill D, Beffert U et al (1999) Oxidative damage and protection by antioxidants in the frontal cortex of Alzheimer’s disease is related to the apolipoprotein E genotype. Free Radic Biol Med 27(5–6):544–553

    Article  CAS  PubMed  Google Scholar 

  • Reed T, Perluigi M, Sultana R et al (2008) Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol Dis 30(1):107–120. doi:10.1016/j.nbd.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  • Reed TT, Pierce WM, Markesbery WR, Butterfield DA (2009) Proteomic identification of HNE-bound proteins in early Alzheimer disease: insights into the role of lipid peroxidation in the progression of AD. Brain Res 1274:66–76. doi:10.1016/j.brainres.2009.04.009

    Article  CAS  PubMed  Google Scholar 

  • Reich EE, Zackert WE, Brame CJ et al (2000) Formation of novel D-ring and E-ring isoprostane-like compounds (D4/E4-neuroprostanes) in vivo from docosahexaenoic acid. Biochemistry 39(9):2376–2383

    Article  CAS  PubMed  Google Scholar 

  • Reich EE, Markesbery WR, Roberts LJ 2nd, Swift LL, Morrow JD, Montine TJ (2001) Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer’s disease. Am J Pathol 158(1):293–297. doi:10.1016/S0002-9440(10)63968-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts LJ 2nd, Montine TJ, Markesbery WR et al (1998) Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem 273(22):13605–13612

    Article  CAS  PubMed  Google Scholar 

  • Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68(5):2092–2097

    Article  CAS  PubMed  Google Scholar 

  • Schmitt FA, Davis DG, Wekstein DR, Smith CD, Ashford JW, Markesbery WR (2000) “Preclinical” AD revisited: neuropathology of cognitively normal older adults. Neurology 55(3):370–376

    Article  CAS  PubMed  Google Scholar 

  • Schrag M, Mueller C, Zabel M et al (2013) Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Neurobiol Dis 59:100–110. doi:10.1016/j.nbd.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  • Selley ML, Close DR, Stern SE (2002) The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer’s disease. Neurobiol Aging 23(3):383–388

    Article  CAS  PubMed  Google Scholar 

  • Shichiri M (2014) The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr 54(3):151–160. doi:10.3164/jcbn.14-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sultana R, Boyd-Kimball D, Poon HF et al (2006) Oxidative modification and down-regulation of Pin1 in Alzheimer’s disease hippocampus: a redox proteomics analysis. Neurobiol Aging 27(7):918–925. doi:10.1016/j.neurobiolaging.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  • Sultana R, Perluigi M, Allan Butterfield D (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157–169. doi:10.1016/j.freeradbiomed.2012.09.027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torres LL, Quaglio NB, de Souza GT et al (2011) Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis JAD 26(1):59–68. doi:10.3233/JAD-2011-110284

    CAS  Google Scholar 

  • Tuppo EE, Forman LJ, Spur BW, Chan-Ting RE, Chopra A, Cavalieri TA (2001) Sign of lipid peroxidation as measured in the urine of patients with probable Alzheimer’s disease. Brain Res Bull 54(5):565–568

    Article  CAS  PubMed  Google Scholar 

  • Waragai M, Yoshida M, Mizoi M et al (2012) Increased protein-conjugated acrolein and amyloid-beta40/42 ratio in plasma of patients with mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 32(1):33–41. doi:10.3233/JAD-2012-120253

    CAS  PubMed  Google Scholar 

  • Williams TI, Lynn BC, Markesbery WR, Lovell MA (2006) Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in Mild Cognitive Impairment and early Alzheimer’s disease. Neurobiol Aging 27(8):1094–1099. doi:10.1016/j.neurobiolaging.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Havrilla CM, Morrow JD, Porter NA (2002) Formation of isoprostane bicyclic endoperoxides from the autoxidation of cholesteryl arachidonate. J Am Chem Soc 124(26):7745–7754

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111(10):5944–5972. doi:10.1021/cr200084z

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Higashi K, Kuni K et al (2015) Distinguishing mild cognitive impairment from Alzheimer’s disease with acrolein metabolites and creatinine in urine. Clin Chim Acta 441:115–121. doi:10.1016/j.cca.2014.12.023

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev 2013:316523. doi:10.1155/2013/316523

    PubMed Central  PubMed  Google Scholar 

  • Zhu X, Castellani RJ, Moreira PI et al (2012) Hydroxynonenal-generated crosslinking fluorophore accumulation in Alzheimer disease reveals a dichotomy of protein turnover. Free Radic Biol Med 52(3):699–704. doi:10.1016/j.freeradbiomed.2011.11.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant 5P01-AG05119. The authors thank Ms. Paula Thomason for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Lovell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradley-Whitman, M.A., Lovell, M.A. Biomarkers of lipid peroxidation in Alzheimer disease (AD): an update. Arch Toxicol 89, 1035–1044 (2015). https://doi.org/10.1007/s00204-015-1517-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1517-6

Keywords

Navigation