Skip to main content

Advertisement

Log in

Metalloproteinase’s Activity and Oxidative Stress in Mild Cognitive Impairment and Alzheimer’s Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) and oxidative stress have been implicated in neurological diseases such as Alzheimer’s disease (AD). Plasma MMP-2 and MMP-9 activities were assessed in Mild Cognitive Impairment (MCI) and AD subjects compared with aged-matched controls, and subsequently analysed in relation to oxidative stress markers. Both MMP-2 and MMP-9 showed no significant changes versus control subjects. Plasma glutathione peroxidase Se-dependent (GPx-Se) activity and malondialdehyde (MDA) levels were higher in AD than in controls (< 0.05), suggesting a role for GPx-Se in controlling oxidative stress in AD. Negative correlations were observed between MMPs and MDA in AD and MCI patients (P < 0.05). In conclusion, oxidative stress events did not include activation of MMPs and this similar pattern in AD and MCI suggests that both are biochemically equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lorenzl S, Albers DS, LeWitt PA et al (2003) Tissue inhibitors of matrix metalloproteinases are elevated in cerebrospinal fluid of neurodegenerative diseases. J Neurol Sci 207:71–76. doi:10.1016/S0022-510X(02)00398-2

    Article  PubMed  CAS  Google Scholar 

  2. Yong VW, Krekoski CA, Forsyth PA et al (1998) Matrix metalloproteinases and diseases of the cns. Trends Neurosci 21:75–80. doi:10.1016/S0166-2236(97)01169-7

    Article  PubMed  CAS  Google Scholar 

  3. Szklarczyk A, Lapinska J, Rylski M et al (2002) Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci 22:920–930

    PubMed  CAS  Google Scholar 

  4. Jourquin J, Tremblay E, Decanis N et al (2003) Neuronal activity-dependent increase of net matrix metalloproteinase activity is associated with MMP-9 neurotoxicity after kainate. Eur J NeuroSci 18:1507–1517. doi:10.1046/j.1460-9568.2003.02876.x

    Article  PubMed  Google Scholar 

  5. Wright JW, Masino AJ, Reichert JR et al (2003) Ethanol-induced impairment of spatial memory and brain matrix metalloproteinases. Brain Res 963:252–261. doi:10.1016/S0006-8993(02)04036-2

    Article  PubMed  CAS  Google Scholar 

  6. Zhang JW, Deb S, Gottschall PE (1998) Regional and differential expression of gelatinases in rat brain after systemic kainic acid or bicuculline administration. Eur J NeuroSci 10:3358–3368. doi:10.1046/j.1460-9568.1998.00347.x

    Article  PubMed  CAS  Google Scholar 

  7. Backstrom JR, Lim GP, Cullen MJ et al (1996) Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1–40). J Neurosci 16:7910–7919

    PubMed  CAS  Google Scholar 

  8. Yushchenko M, Weber F, Mader M et al (2000) Matrix metalloproteinase-9 (MMP-9) in human cerebrospinal fluid (CSF): elevated levels are primarily related to CSF cell count. J Neuroimmunol 110:244–251. doi:10.1016/S0165-5728(00)00339-8

    Article  PubMed  CAS  Google Scholar 

  9. Szabo KA, Ablin RJ, Singh G (2004) Matrix metalloproteinases and the immune response. Clin Appl Immunol Rev 4:295–319. doi:10.1016/j.cair.2004.02.001

    Article  CAS  Google Scholar 

  10. Peress N, Perillo E, Zucker S (1995) Localization of tissue inhibitor of matrix metalloproteinases in alzheimer’s disease and normal brain. J Neuropathol Exp Neurol 54:16–22. doi:10.1097/00005072-199501000-00002

    Article  PubMed  CAS  Google Scholar 

  11. Ma Z, Chang MJ, Shah RC et al (2005) Interferon-gamma-activated stat-1alpha suppresses MMP-9 gene transcription by sequestration of the coactivators cbp/p300. J Leukoc Biol 78:515–523. doi:10.1189/jlb.0205112

    Article  PubMed  CAS  Google Scholar 

  12. Li J, Leschka S, Rutschow S et al (2007) Immunomodulation by interleukin-4 suppresses matrix metalloproteinases and improves cardiac function in murine myocarditis. Eur J Pharmacol 554:60–68. doi:10.1016/j.ejphar.2006.08.024

    Article  PubMed  CAS  Google Scholar 

  13. Stearns ME, Wang M, Hu Y et al (2003) Interleukin 10 blocks matrix metalloproteinase-2 and membrane type 1-matrix metalloproteinase synthesis in primary human prostate tumor lines. Clin Cancer Res 9:1191–1199

    PubMed  CAS  Google Scholar 

  14. Schroen DJ, Brinckerhoff CE (1996) Nuclear hormone receptors inhibit matrix metalloproteinase (MMP) gene expression through diverse mechanisms. Gene Expr 6:197–207

    PubMed  CAS  Google Scholar 

  15. Shi Q, Gibson GE (2007) Oxidative stress and transcriptional regulation in Alzheimer disease. Alzheimer Dis Assoc Disord 21:276–291

    PubMed  CAS  Google Scholar 

  16. Golubkov VS, Chekanov AV, Shiryaev SA et al (2007) Proteolysis of the membrane type-1 matrix metalloproteinase prodomain: Implications for a two-step proteolytic processing and activation. J Biol Chem 282:36283–36291. doi:10.1074/jbc.M706290200

    Article  PubMed  CAS  Google Scholar 

  17. Rosenblum G, Meroueh S, Toth M et al (2007) Molecular structures and dynamics of the stepwise activation mechanism of a matrix metalloproteinase zymogen: Challenging the cysteine switch dogma. J Am Chem Soc 129:13566–13574. doi:10.1021/ja073941l

    Article  PubMed  CAS  Google Scholar 

  18. Fu X, Parks WC, Heinecke JW (2008) Activation and silencing of matrix metalloproteinases. Semin Cell Dev Biol 19:2–13. doi:10.1016/j.semcdb.2007.06.005

    Article  PubMed  CAS  Google Scholar 

  19. Bermejo P, Martin-Aragon S, Benedi J et al (2008) Peripheral levels of glutathione and protein oxidation as markers in the development of Alzheimer’s disease from mild cognitive impairment. Free Radic Res 42:162–170. doi:10.1080/10715760701861373

    Article  PubMed  CAS  Google Scholar 

  20. Petersen RC, Doody R, Kurz A et al (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992. doi:10.1001/archneur.58.12.1985

    Article  PubMed  CAS  Google Scholar 

  21. McKhann G, Drachman D, Folstein M et al (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34:939–944

    PubMed  CAS  Google Scholar 

  22. Tinetti ME (1986) Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc 34:119–126

    PubMed  CAS  Google Scholar 

  23. Ankri J, Andrieu S, Beaufils B et al (2005) Beyond the global score of the Zarit burden interview: useful dimensions for clinicians. Int J Geriatr Psychiatry 20:254–260. doi:10.1002/gps.1275

    Article  PubMed  Google Scholar 

  24. Cockrell JR, Folstein MF (1988) Mini-mental state examination (MMSE). Psychopharmacol Bull 24:689–692

    PubMed  CAS  Google Scholar 

  25. Schmand B, Walstra G, Lindeboom J et al (2000) Early detection of Alzheimer’s disease using the Cambridge cognitive examination (CAMCOG). Psychol Med 30:619–627. doi:10.1017/S0033291799002068

    Article  PubMed  CAS  Google Scholar 

  26. Makatura TJ, Lam CS, Leahy BJ et al (1999) Standardized memory tests and the appraisal of everyday memory. Brain Inj 13:355–367. doi:10.1080/026990599121548

    Article  PubMed  CAS  Google Scholar 

  27. Cummings JL, Mega M, Gray K et al (1994) The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology 44:2308–2314

    PubMed  CAS  Google Scholar 

  28. Torres RM, Miralles R, Garcia-Caselles MP et al (2004) Observational scale and geriatric depression scale of Yesavage to identify depressive symptoms in older patients. Arch Gerontol Geriatr Suppl (9):437–442

  29. Ready RE, Ott BR, Grace J et al (2002) The cornell-brown scale for quality of life in dementia. Alzheimer Dis Assoc Disord 16:109–115. doi:10.1097/00002093-200204000-00008

    Article  PubMed  Google Scholar 

  30. Kleiner DE, Stetler-Stevenson WG (1994) Quantitative zymography: detection of picogram quantities of gelatinases. Anal Biochem 218:325–329. doi:10.1006/abio.1994.1186

    Article  PubMed  CAS  Google Scholar 

  31. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    PubMed  CAS  Google Scholar 

  32. Hill HD, Straka JG (1988) Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal Biochem 170:203–208. doi:10.1016/0003-2697(88)90109-1

    Article  PubMed  CAS  Google Scholar 

  33. Barja de Quiroga G, Perez-Campo R, Lopez Torres M (1990) Anti-oxidant defences and peroxidation in liver and brain of aged rats. Biochem J 272:247–250

    PubMed  CAS  Google Scholar 

  34. Bermejo P, Gomez-Serranillos P, Santos J et al (1997) Determination of malonaldehyde in Alzheimer’s disease: a comparative study of high-performance liquid chromatography and thiobarbituric acid test. Gerontology 43:218–222

    Article  PubMed  CAS  Google Scholar 

  35. Kelly PJ, Morrow JD, Ning M et al (2008) Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the biomarker evaluation for antioxidant therapies in stroke (beat-stroke) study. Stroke 39:100–104. doi:10.1161/STROKEAHA.107.488189

    Article  PubMed  CAS  Google Scholar 

  36. Tsai HC, Chung LY, Chen ER et al (2008) Association of matrix metalloproteinase-9 and tissue inhibitors of metalloproteinase-4 in cerebrospinal fluid with blood–brain barrier dysfunction in patients with eosinophilic meningitis caused by Angiostrongylus cantonensis. Am J Trop Med Hyg 78:20–27

    PubMed  CAS  Google Scholar 

  37. Lorenzl S, Albers DS, Relkin N et al (2003) Increased plasma levels of matrix metalloproteinase-9 in patients with Alzheimer’s disease. Neurochem Int 43:191–196. doi:10.1016/S0197-0186(03)00004-4

    Article  PubMed  CAS  Google Scholar 

  38. Baig S, Kehoe PG, Love S (2008) MMP-2, -3 and -9 levels and activity are not related to Abeta load in the frontal cortex in Alzheimer’s disease. Neuropathol Appl Neurobiol 34:205–215. doi:10.1111/j.1365-2990.2007.00897.x

    Article  PubMed  CAS  Google Scholar 

  39. Adair JC, Charlie J, Dencoff JE et al (2004) Measurement of gelatinase B (MMP-9) in the cerebrospinal fluid of patients with vascular dementia and Alzheimer disease. Stroke 35:e159–e162. doi:10.1161/01.STR.0000127420.10990.76

    Article  PubMed  CAS  Google Scholar 

  40. Farooqui AA, Ong WY, Horrocks LA (2004) Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res 29:1961–1977. doi:10.1007/s11064-004-6871-3

    Article  PubMed  CAS  Google Scholar 

  41. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  42. John M, Jaworski C, Chen Z et al (2004) Matrix metalloproteinases are down-regulated in rat lenses exposed to oxidative stress. Exp Eye Res 79:839–846. doi:10.1016/j.exer.2004.08.025

    Article  PubMed  CAS  Google Scholar 

  43. Ganguly K, Kundu P, Banerjee A et al (2006) Hydrogen peroxide-mediated downregulation of matrix metalloprotease-2 in indomethacin-induced acute gastric ulceration is blocked by melatonin and other antioxidants. Free Radic Biol Med 41:911–925. doi:10.1016/j.freeradbiomed.2006.04.022

    Article  PubMed  CAS  Google Scholar 

  44. Straface E, Matarrese P, Gambardella L et al (2005) Oxidative imbalance and cathepsin D changes as peripheral blood biomarkers of Alzheimer disease: a pilot study. FEBS Lett 579:2759–2766. doi:10.1016/j.febslet.2005.03.094

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by a grant (PI021745) from the National Research Foundation of the Spanish Ministry of Health (FIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagrario Martín-Aragón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Aragón, S., Bermejo-Bescós, P., Benedí, J. et al. Metalloproteinase’s Activity and Oxidative Stress in Mild Cognitive Impairment and Alzheimer’s Disease. Neurochem Res 34, 373–378 (2009). https://doi.org/10.1007/s11064-008-9789-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9789-3

Keywords

Navigation