Skip to main content

Advertisement

Log in

Lipid Peroxidation and Antioxidant Enzyme Activities in Vascular and Alzheimer Dementias

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It has been reported that oxidative stress may play a role in the pathogenesis of dementia of the Alzheimer type (AD) and the cerebral ischemia which causes vascular dementia (VD). We measured malondialdehyde (MDA) levels and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) activities in blood samples from patients with AD and VD and in healthy non-demented controls (CTR) which similar ages to the patients, in order to evaluate the degree of oxidative stress in patients with AD and VD. A sample of 150 subjects consisting of 50 patients with AD; 50 patients with VD and 50 CTR, aged from 65 to 85 years on, was analyzed. Most of the changes observed were in SOD activity and MDA levels. Catalase activity were least affected. Significant differences were observed in SOD and GR activity between males and females in CRT and in patients with AD, but not in VD. We have found a decrease in antioxidant enzymes activities (SOD, CAT, GPx and GR) in patients with AD and VD and significant differences were observed between CRT and AD patients for ages from 65 to 74, 75 to 84 and from 85 years to 94 years in SOD activity and MDA levels (< 0.001). MDA levels increase with age in VD, AD and CTR. No significant variation with respect to sex were detected, but significant variations in MDA levels were detected between CRT and patients with VD and AD (< 0.001). We conclude that oxidative stress plays an important role in the brain damage for both AD and VD, being observed higher levels of oxidative stress for AD that for VD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Terry RD (1994) Neuropathological changes in Alzheimer’s disease. Prog Brain Res 101:383–390

    PubMed  CAS  Google Scholar 

  2. Christie JE, Whalley LJ, Bennie J et al (1987) Characteristic plasma hormone changes in Alzheimer’s disease. Br J Psychiatry 150:674–681

    PubMed  CAS  Google Scholar 

  3. Meyer JS, McClintic KL, Rogers RL et al (1988) Aetiological considerations and risk factors for multi-infarct dementia. J Neurol Neurosurg Psychiatry 51:1489–1497

    PubMed  CAS  Google Scholar 

  4. Román GC (2002) Vascular dementia revisited: diagnosis, pathogenesis, treatment, and prevention. Med Clin North Am 86:477–499

    Article  PubMed  Google Scholar 

  5. Akiyama H, Barger S, Barnum S et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging. 21(3):383–421

    Article  PubMed  CAS  Google Scholar 

  6. Zhu X, Raina AK, Lee HG et al (2004) Oxidative stress signaling in Alzheimer’s disease. Brain Res 1000:32–39

    Article  PubMed  CAS  Google Scholar 

  7. Bowling AC, Beal MF (1995) Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sci 56:1151–1171

    Article  PubMed  CAS  Google Scholar 

  8. Siesjo BK (1992) Pathophysiology and treatment of focal cerebral ischemia. Part II: mechanism of damage and treatment. J Neurosurg 77:337–354

    PubMed  CAS  Google Scholar 

  9. Reiter RJ (1995) Oxidative processes and oxidative defense mechanism in the aging brain. FASEB J 9:526–533

    PubMed  CAS  Google Scholar 

  10. Halliwell B (1989) Oxidants and the central nervous system: some fundamental questions. Acta Neurol Scand 126:23–33

    CAS  Google Scholar 

  11. Slater TF (1984) Overview of the methods used for detecting lipid peroxidation. In: Packer L (ed) Methods in enzymology, oxygen radicals in biological systems, vol. 105. London Academic Press, pp 283–293

  12. Draper HH, Dhanakoti SN, Hadley M et al (1988) Malondialdehyde in biological systems. In: Chow CK (ed) Cellular antioxidant defense mechanism. CRC Press, Boca Raton, pp 97–100

    Google Scholar 

  13. Ambrosio G, Flaherty JJ (1991) Oxygen radicals generated at reflow induce peroxidation of membrane lipids in reperfused heart. J Clin Invest 87:2056–2066

    PubMed  CAS  Google Scholar 

  14. Michel C, Raes M, Toussaint O et al (1994) Importance of Se-glutathione peroxidase, catalase and Cu/Zn SOD for cell survival against oxidative stress. Free Radic Biol Med 17:235–248

    Article  Google Scholar 

  15. Sun AY, Chen YM (1985) Oxidative stress and neurodegenerative disorders. J Biomed Sci 5:401–414

    Article  Google Scholar 

  16. McKhann G, Drachman D, Folstein M et al (1984) Clinical diagnosis of Alzheimer’s disease: report of the NICDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34:939–944

    PubMed  CAS  Google Scholar 

  17. Roth M, Tym E, Mountjoy CQ et al (1986) CAMDEX: a standardized instrument for the diagnosis of mental disorders in the elderly with special reference to the early detection of dementia. Br J Psychiatry 149:698–709

    Article  PubMed  CAS  Google Scholar 

  18. Roman GC, Tatemichi TK, Erkinjuntti T et al (1993) Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 43:250–260

    PubMed  CAS  Google Scholar 

  19. Minami M, Yoshikawa H (1979) A simplified assay method of superoxide dismutase activity for clinical use. Clin Chem Acta 92:337–342

    Article  CAS  Google Scholar 

  20. McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  21. Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic Analysis. Weinheim Verlag Chemic, pp 673–676

  22. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70–158

  23. Carmagnol F, Sinet PM, Jerome H (1983) Selenium-dependent and non-selenium-dependent glutathione peroxidases in human tissue extracts. Biochim Biophys Acta 759:49–57

    PubMed  CAS  Google Scholar 

  24. Calberg I, Mannervik J (1985) Glutathione reductase. Methods in enzymology, vol. 113. Academic Press Inc, pp 484–490

  25. Bull AW, Marnett LJ (1985) Determination of malondialdehyde by ion-pairing high-performance liquid chromatography. Anal Biochem 149:284–290

    Article  PubMed  CAS  Google Scholar 

  26. Esterbauer H, Lang J, Zadravec S et al (1984) Detection of malondialdehyde by high-performance liquid chromatography. In: Packer L (ed) Methods in enzymology: oxygen radical in biological systems, vol. 105. Academic Press, London, pp 319–327

    Chapter  Google Scholar 

  27. De la Torre R, Casado A, López-Fernández ME et al (1999) Superoxide dismutase activity levels in a Spanish population 50–93 years. Am J Hum Biol 11:45–47

    Article  PubMed  Google Scholar 

  28. Casado A, López-Fernández ME (2003) Age-correlated changes of erythrocyte catalase activity in the Spanish population. Gerontology 49:251–54

    Article  PubMed  CAS  Google Scholar 

  29. Leutner S, Schindownski K, Frolich L et al (2005) Enhanced ROS-generation in lymphocytes from Alzheimer’s disease. Pharmacopsychiatry 38(6):312–315

    Article  PubMed  CAS  Google Scholar 

  30. Rinaldi P, Polidori MC, Metastasio A et al (2003) Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol Aging 24(7):915–919

    Article  PubMed  CAS  Google Scholar 

  31. Zafrilla P, Mulero J, Xandri JM et al (2006) Oxidative stress in Alzheimer patients in different stages of the disease. Curr Med Chem 13:1075–1083

    Article  PubMed  CAS  Google Scholar 

  32. Misra HP, Fridovich I (1972) The generation of superoxide radical during the autooxidation of haemoglobin. J Biol Chem 247:6960–6962

    PubMed  CAS  Google Scholar 

  33. Perrin R, Briançon S, Jeandel C et al (1990) Blood activity of Cu/Zn superoxide dismutase and catalase in Alzheimer’s disease: a case control study. Gerontology 36:306–313

    PubMed  CAS  Google Scholar 

  34. de Lusting ES, Serra JA, Kohan S et al (1993) Copper–Zinc superoxide dismutase activity in red blood cells and serum in demented patients and in aging. J Neurol 115:18–25

    Google Scholar 

  35. De la Torre R, Casado A, López-Fernández ME et al (1996) Human aging brain disorders: role of antioxidant enzymes. Neurochem Res 21:885–888

    Article  Google Scholar 

  36. Richardson JS (1993) Free radicals in the genesis of Alzheimer’s disease. Ann NY Acad Sci 695:73–76

    Article  PubMed  CAS  Google Scholar 

  37. Chen L, Richardson JS, Cadwell JE et al (1994) Regional brain activity of free radical defense enzyme in autopsy samples from patients with Alzheimer’s disease and from nondemented controls. Int J Neurosci 75:83–90

    Article  PubMed  CAS  Google Scholar 

  38. Ihara Y, Hayabara T, Sasaki K et al (1997) Free radicals and superoxide dismutase in blood of patients with Alzheimer’s disease and vascular dementia. J Neurol Sci 153:76–81

    Article  PubMed  CAS  Google Scholar 

  39. Venarucci D, Venarucci V, Vallese A et al (1991) Free radicals: important cause of pathologies refer to ageing. Panminerva Med 41:335–339

    Google Scholar 

  40. Serra JA, Marschoff ER, Dominguez RO et al (2004) Oxidative stress in Alzheimer’s and vascular dementias: masking of the antioxidant profiles by concomitant Type II diabetes mellitus condition. J Neurol Sci 218:17–24

    Article  PubMed  CAS  Google Scholar 

  41. Jeandel C, Nicolas MB, Dubois F et al (1989) Lipid peroxidation and free radical scavengers in Alzheimer’s disease. Gerontology 35:275–282

    PubMed  CAS  Google Scholar 

  42. Anneren G, Gardner A, Lundin T (1986) Increased glutathione peroxidase activity in erythrocytes in patients with Alzheimer’s disease/senile dementia of Alzheimer type. Acta Neurol Scand 73:586–589

    PubMed  CAS  Google Scholar 

  43. Foy CJ, Passmore AP, Vahidassr MD et al (1999) Plasma chain-breakingantioxidants in Alzheimer’s disease, vascular dementia and Parkinson’s disease. Q F Med 92:39–45

    CAS  Google Scholar 

  44. Guidi I, Galimberti D, Lonati S et al (1999) Oxidative imbalance in patients with mild impairment and Alzheimer’s disease. Neurobiol Aging 2006 27:262–269

    Article  CAS  Google Scholar 

  45. Praticò D, Sung S (2004) Lipid peroxidation and oxidative imbalance: early functional events in Alzheimer’s disease. J Alzheimers Dis 6:171–175

    PubMed  Google Scholar 

  46. Mariani E, Polidori MC, Cherubine A et al (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr 827:65–75

    Article  CAS  Google Scholar 

  47. Foster TC (2006) Biological markers of age-related memory deficits: treatment of senescent physiology. CNS Drugs 20(2):153–156

    Article  PubMed  Google Scholar 

  48. Zandi PP, Anthony JC, Khachaturian AS et al (2004) Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch Neurol 61(1):82–88

    Article  PubMed  Google Scholar 

  49. Morris MC, Evans DA, Bienias JL et al (2002) Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA 287(24):3230–3237

    Article  PubMed  CAS  Google Scholar 

  50. Bermejo P, Gomez-Serranillos P, Santos J et al (1997) Determination of Malonaldehyde in Alzheimer’s disease: a comparative study of high-performance liquid chromatography and tiobarbituric acid test. Gerontology 43:218–222

    Article  PubMed  CAS  Google Scholar 

  51. Gil P, Fariñas F, Casado A et al (2002) Malondialdehyde: a possible marker of ageing. Gerontology 48:209–214

    Article  PubMed  CAS  Google Scholar 

  52. Mariani E, Cornacchiola V, Polidori MC et al (2006) Antioxidant enzyme activities in healthy old subjects: influence of age, gender and zinc status: Results from the Zincage Project. Biogerontology 7(5–6):391–398

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients with AD and VD, the control individuals, and the collaborating clinicians for their participation in this study. We also thank Miss María Burgos for her excellent reviewing of English in this manuscript. These studies were performed with funds provided by Eugenio Rodriguez Pascual Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángela Casado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casado, Á., Encarnación López-Fernández, M., Concepción Casado, M. et al. Lipid Peroxidation and Antioxidant Enzyme Activities in Vascular and Alzheimer Dementias. Neurochem Res 33, 450–458 (2008). https://doi.org/10.1007/s11064-007-9453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9453-3

Keywords

Navigation