Skip to main content

Advertisement

Log in

Exposure to multi-walled carbon nanotubes results in aggravation of airway inflammation and remodeling and in increased production of epithelium-derived innate cytokines in a mouse model of asthma

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

With the development of nanotechnologies, the potential adverse effects of nanomaterials such as multi-walled carbon nanotubes (MWCNT) on the respiratory tract of asthmatics are questioned. Furthermore, investigations are necessary to understand how these effects might arise. In the present study, we hypothesized that epithelium-derived innate cytokines that are considered as important promoting factors in allergy may contribute to an aggravating effect of MWCNT on asthma. We investigated in the mouse the effect of MWCNT on systemic immune response and airway inflammation and remodeling induced by the most frequent allergen so far associated with asthma, house dust mite (HDM), and we examined the production of the innate cytokines thymic stromal lymphopoietin (TSLP), IL-25, IL-33, and GM-CSF. Mice exposed to HDM exhibited specific IgG1 in serum and inflammatory cell infiltration, and increased Th2 cytokine production, mucus hyperproduction, and collagen deposition in the airways when compared to naïve animals. Levels of total IgG1 and HDM-specific IgG1, influx of macrophages, eosinophils and neutrophils, production of collagen, TGF-β1, and mucus, as well as levels of IL-13, eotaxin, and TARC, were dose-dependently increased in mice exposed to HDM and MWCNT compared to HDM alone. These effects were associated with an increased production of TSLP, IL-25, IL-33, and GM-CSF in the airways. Our data demonstrate that MWCNT increase in a dose-dependent manner systemic immune response, as well as airway allergic inflammation and remodeling induced by HDM in the mouse. Our data suggest also a role for airway epithelium and innate cytokines in these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberg T, Cassee FR, Groeng EC, Dybing E, Lovik M (2009) Fine ambient particles from various sites in Europe exerted a greater IgE adjuvant effect than coarse ambient particles in a mouse model. J Toxicol Environ Health A 72(1):1–13. doi:10.1080/15287390802414471

    Article  CAS  PubMed  Google Scholar 

  • Ban M, Langonne I, Huguet N, Guichard Y, Goutet M (2013) Iron oxide particles modulate the ovalbumin-induced Th2 immune response in mice. Toxicol Lett 216(1):31–39. doi:10.1016/j.toxlet.2012.11.003

    Article  CAS  PubMed  Google Scholar 

  • Bartemes KR, Kita H (2012) Dynamic role of epithelium-derived cytokines in asthma. Clin Immunol 143(3):222–235. doi:10.1016/j.clim.2012.03.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baulig A, Sourdeval M, Meyer M, Marano F, Baeza-Squiban A (2003) Biological effects of atmospheric particles on human bronchial epithelial cells. Comparison with diesel exhaust particles. Toxicol In Vitro 17(5–6):567–573

    Article  CAS  PubMed  Google Scholar 

  • Beamer CA, Girtsman TA, Seaver BP, Finsaas KJ, Migliaccio CT, Perry VK, Rottman JB, Smith DE, Holian A (2012) IL-33 mediates multi-walled carbon nanotube (MWCNT)-induced airway hyper-reactivity via the mobilization of innate helper cells in the lung. Nanotoxicology. doi:10.3109/17435390.2012.702230

    Google Scholar 

  • Bleck B, Tse DB, de Lafaille MAC, Zhang FJ, Reibman J (2008) Diesel exhaust particle-exposed human bronchial epithelial cells induce dendritic cell maturation and polarization via thymic stromal lymphopoietin. J Clin Immunol 28(2):147–156

    Article  PubMed Central  PubMed  Google Scholar 

  • Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160(2):121–126. doi:10.1016/j.toxlet.2005.06.020

    Article  CAS  PubMed  Google Scholar 

  • Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM (2000) Asthma—from bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med 161(5):1720–1745

    Article  CAS  PubMed  Google Scholar 

  • Chen EY, Garnica M, Wang YC, Chen CS, Chin WC (2011) Mucin secretion induced by titanium dioxide nanoparticles. PLoS ONE 6(1):e16198. doi:10.1371/journal.pone.0016198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Churg A, Brauer M, del Carmen Avila-Casado M, Fortoul TI, Wright JL (2003) Chronic exposure to high levels of particulate air pollution and small airway remodeling. Environ Health Perspect 111(5):714–718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Haar C, Hassing I, Bol M, Bleumink R, Pieters R (2006) Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. Clin Exp Allergy 36(11):1469–1479

    Article  PubMed  Google Scholar 

  • Dergham M, Lepers C, Verdin A, Billet S, Cazier F, Courcot D, Shirali P, Garcon G (2012) Prooxidant and proinflammatory potency of air pollution particulate matter (PM(2).(5)(-)(0).(3)) produced in rural, urban, or industrial surroundings in human bronchial epithelial cells (BEAS-2B). Chem Res Toxicol 25(4):904–919. doi:10.1021/tx200529v

    Article  CAS  PubMed  Google Scholar 

  • Dockery DW, Pope CA 3rd (1994) Acute respiratory effects of particulate air pollution. Ann Rev Public Health 15:107–132. doi:10.1146/annurev.pu.15.050194.000543

    Article  CAS  Google Scholar 

  • Fiorito S, Monthioux M, Psaila R, Pierimarchi P, Zonfrillo M, D’Emilia E, Grimaldi S, Lisi A, Beguin F, Almairac R, Noe L, Serafino A (2009) Evidence for electro-chemical interactions between multi-walled carbon nanotubes and human macrophages. Carbon 47(12):2789–2804

    Article  CAS  Google Scholar 

  • Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, Menon S, Clifford T, Hunte B, Lesley R, Muchamuel T, Hurst SD, Zurawski G, Leach MW, Gorman DM, Rennick DM (2001) IL-25 induces IL-4 IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15(6):985–995

    Article  CAS  PubMed  Google Scholar 

  • Ghio AJ, Devlin RB (2001) Inflammatory lung injury after bronchial instillation of air pollution particles. Am J Respir Crit Care Med 164(4):704–708. doi:10.1164/ajrccm.164.4.2011089

    Article  CAS  PubMed  Google Scholar 

  • Gregory LG, Jones CP, Walker SA, Sawant D, Gowers KH, Campbell GA, McKenzie AN, Lloyd CM (2013) IL-25 drives remodelling in allergic airways disease induced by house dust mite. Thorax 68(1):82–90. doi:thoraxjnl-2012-202003

    Article  PubMed Central  PubMed  Google Scholar 

  • Hirai T, Yoshikawa T, Nabeshi H, Yoshida T, Tochigi S, Ichihashi K, Uji M, Akase T, Nagano K, Abe Y, Kamada H, Itoh N, Tsunoda S, Yoshioka Y, Tsutsumi Y (2012) Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection. Part Fibre Toxicol 9:3. doi:10.1186/1743-8977-9-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hussain S, Vanoirbeek JAJ, Luyts K, De Vooght V, Verbeken E, Thomassen LCJ, Martens JA, Dinsdale D, Boland S, Marano F, Nemery B, Hoet PHM (2011) Lung exposure to nanoparticles modulates an asthmatic response in a mouse model. Eur Respir J 37(2):299–309

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Koike E, Yanagisaw R, Hirano S, Nishikawa M, Takano H (2009) Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model. Toxicol Appl Pharmacol 237(3):306–316

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Yanagisawa R, Koike E, Nishikawa M, Takano H (2010) Repeated pulmonary exposure to single-walled carbon nanotubes exacerbates allergic inflammation of the airway: possible role of oxidative stress. Free Radical Biol Med 48(7):924–934

    Article  CAS  Google Scholar 

  • Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4(10):627–633. doi:10.1038/nnano.2009.241

    Article  CAS  PubMed  Google Scholar 

  • Lambrecht BN, Hammad H (2012) The airway epithelium in asthma. Nat Med 18(5):684–692. doi:10.1038/nm.2737

    Article  CAS  PubMed  Google Scholar 

  • Larsen ST, Roursgaard M, Jensen KA, Nielsen GD (2010) Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol 106(2):114–117

    Article  CAS  Google Scholar 

  • Laverny G, Casset A, Purohit A, Schaeffer E, Spiegelhalter C, de Blay F, Pons F (2013) Immunomodulatory properties of multi-walled carbon nanotubes in peripheral blood mononuclear cells from healthy subjects and allergic patients. Toxicol Lett 217(2):91–101. doi:10.1016/j.toxlet.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  • Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44(9):1689–1699. doi:S0891-5849(08)00071-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S (2011) Nanoparticles: molecular targets and cell signalling. Arch Toxicol 85(7):733–741. doi:10.1007/s00204-010-0546-4

    Article  CAS  PubMed  Google Scholar 

  • Mercer RR, Scabilloni J, Wang L, Kisin E, Murray AR, Schwegler-Berry D, Shvedova AA, Castranova V (2008) Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am J Physiol Lung Cell Mol Physiol 294(1):L87–L97

    Article  CAS  PubMed  Google Scholar 

  • Meunier E, Coste A, Olagnier D, Lefevre L, Authier H, Dardenne C, Beraud M, Flahaut E, Pipy B (2011) Double walled carbon nanotubes induce IL-1b secretion in human monocytes through the Nlrp3 inflammasome activation. Inflamm Res 60:176–177

    Google Scholar 

  • Mitchell LA, Lauer FT, Burchiel SW, McDonald JD (2009) Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 4(7):451–456. doi:10.1038/nnano.2009.151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221–231

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Miyata M, Ohba T, Ando T, Hatsushika K, Suenaga F, Shimokawa N, Ohnuma Y, Katoh R, Ogawa H, Nakao A (2008) Cigarette smoke extract induces thymic stromal lymphopoietin expression, leading to T(H)2-type immune responses and airway inflammation. J Allergy Clin Immunol 122(6):1208–1214. doi:10.1016/J.Jaci.2008.09.022

    Article  CAS  PubMed  Google Scholar 

  • Nygaard UC, Alberg T, Bleumink R, Aase A, Dybing E, Pieters R, Lovik M (2005) Ambient air particles from four European cities increase the primary cellular response to allergen in the draining lymph node. Toxicology 207(2):241–254. doi:10.1016/j.tox.2004.09.016

    Article  CAS  PubMed  Google Scholar 

  • Nygaard UC, Hansen JS, Samuelsen M, Alberg T, Marioara CD, Lovik M (2009) Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci 109(1):113–123

    Article  CAS  PubMed  Google Scholar 

  • Palomaki J, Karisola P, Pylkkanen L, Savolainen K, Alenius H (2010) Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology 267(1–3):125–131. doi:10.1016/j.tox.2009.10.034

    Article  CAS  PubMed  Google Scholar 

  • Palomaki J, Valimaki E, Sund J, Vippola M, Clausen PA, Jensen KA, Savolainen K, Matikainen S, Alenius H (2011) Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5(9):6861–6870

    Article  CAS  PubMed  Google Scholar 

  • Paradise M, Goswami T (2007) Carbon nanotubes—production and industrial applications. Mater Des 28(5):1477–1489

    Article  CAS  Google Scholar 

  • Park HS, Kim KH, Jang S, Park JW, Cha HR, Lee JE, Kim JO, Kim SY, Lee CS, Kim JP, Jung SS (2010) Attenuation of allergic airway inflammation and hyperresponsiveness in a murine model of asthma by silver nanoparticles. Int J Nanomed 5:505–515

    Article  CAS  Google Scholar 

  • Peden DB (2002) Pollutants and asthma: role of air toxics. Environ Health Perspect 110(Suppl 4):565–568

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porter DW, Hubbs AF, Mercer RR, Wu NQ, Wolfarth MG, Sriram K, Leonard S, Battelli L, Schwegler-Berry D, Friend S, Andrew M, Chen BT, Tsuruoka S, Endo M, Castranova V (2010) Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269(2–3):136–147

    Article  CAS  PubMed  Google Scholar 

  • Riedl M, Diaz-Sanchez D (2005) Biology of diesel exhaust effects on respiratory function. J Allergy Clin Immunol 115(2):221–228

    Article  CAS  PubMed  Google Scholar 

  • Ronzani C, Spiegelhalter C, Vonesch JL, Lebeau L, Pons F (2012) Lung deposition and toxicological responses evoked by multi-walled carbon nanotubes dispersed in a synthetic lung surfactant in the mouse. Arch Toxicol 86(1):137–149. doi:10.1007/s00204-011-0741-y

    Article  CAS  PubMed  Google Scholar 

  • Rossi EM, Pylkkanen L, Koivisto AJ, Nykasenoja H, Wolff H, Savolainen K, Alenius H (2010) Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Part Fibre Toxicol 7:35. doi:10.1186/1743-8977-7-35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryman-Rasmussen JP, Tewksbury EW, Moss OR, Cesta MF, Wong BA, Bonner JC (2009) Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am J Respir Cell Mol Biol 40(3):349–358

    Article  CAS  PubMed  Google Scholar 

  • Sager TM, Wolfarth MW, Andrew M, Hubbs A, Friend S, Chen TH, Porter DW, Wu N, Yang F, Hamilton RF, Holian A (2013) Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model. Nanotoxicology. doi:10.3109/17435390.2013.779757

    PubMed  Google Scholar 

  • Schmitz J, Owyang A, Oldham E, Song YL, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin JZ, Li XX, Gorman DM, Bazan JF, Kastelein RA (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23(5):479–490. doi:10.1016/J.Immuni.2005.09.015

    Article  CAS  PubMed  Google Scholar 

  • Shikotra A, Choy DF, Ohri CM, Doran E, Butler C, Hargadon B, Shelley M, Abbas AR, Austin CD, Jackman J, Wu LC, Heaney LG, Arron JR, Bradding P (2012) Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol 129(1):104–111. doi:10.1016/J.Jaci.2011.08.031

    Article  CAS  PubMed  Google Scholar 

  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol-Lung Cell Mol Physiol 289(5):L698–L708

    Article  CAS  PubMed  Google Scholar 

  • Smith DE (2010) IL-33: a tissue derived cytokine pathway involved in allergic inflammation and asthma. Clin Exp Allergy 40(2):200–208. doi:10.1111/j.1365-2222.2009.03384.x

    Article  CAS  PubMed  Google Scholar 

  • Snyder-Talkington BN, Pacurari M, Dong C, Leonard SS, Schwegler-Berry D, Castranova V, Qian Y, Guo NL (2013) Systematic analysis of multiwalled carbon nanotube-induced cellular signaling and gene expression in human small airway epithelial cells. Toxicol Sci 133(1):79–89. doi:10.1093/toxsci/kft019

    Article  CAS  PubMed  Google Scholar 

  • Thurnherr T, Su DS, Diener L, Weinberg G, Manser P, Pfander N, Arrigo R, Schuster ME, Wick P, Krug HF (2009) Comprehensive evaluation of in vitro toxicity of three large-scale produced carbon nanotubes on human Jurkat T cells and a comparison to crocidolite asbestos. Nanotoxicology 3(4):319–338. doi:10.3109/17435390903276958

    Article  CAS  Google Scholar 

  • Thurnherr T, Brandenberger C, Fischer K, Diener L, Manser P, Maeder-Althaus X, Kaiser JP, Krug HF, Rothen-Rutishauser B, Wick P (2011) A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicol Lett 200(3):176–186

    Article  CAS  PubMed  Google Scholar 

  • Tkach AV, Shurin GV, Shurin MR, Kisin ER, Murray AR, Young SH, Star A, Fadeel B, Kagan VE, Shvedova AA (2011) Direct effects of carbon nanotubes on dendritic cells induce immune suppression upon pulmonary exposure. ACS Nano 5(7):5755–5762. doi:10.1021/nn2014479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Val S, Belade E, George I, Boczkowski J, Baeza-Squiban A (2012) Fine PM induce airway MUC5AC expression through the autocrine effect of amphiregulin. Arch Toxicol 86(12):1851–1859. doi:10.1007/s00204-012-0903-6

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Liu YJ (2009) Thymic stromal lymphopoietin, OX40-ligand, and interleukin-25 in allergic responses. Clin Exp Allergy 39(6):798–806. doi:10.1111/j.1365-2222.2009.03241.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Sun RH, Zhang N, Nie H, Liu JH, Wang JN, Wang H, Liu Y (2009) Multi-walled carbon nanotubes do not impair immune functions of dendritic cells. Carbon 47(7):1752–1760

    Article  CAS  Google Scholar 

  • Wang XJ, Katwa P, Podila R, Chen PY, Ke PC, Rao AM, Walters DM, Wingard CJ, Brown JM (2011) Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol 8:24. doi:10.1186/1743-8977-8-24

    Article  PubMed Central  PubMed  Google Scholar 

  • Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I, Tschopp J (2010) Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1 alpha and IL-1 beta. PNAS 107(45):19449–19454

    Article  CAS  PubMed  Google Scholar 

  • Zhou BH, Comeau MR, De Smedt T, Liggitt HD, Dahl ME, Lewis DB, Gyarmati D, Aye T, Campbell DJ, Ziegler SF (2005) Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 6(10):1047–1053. doi:10.1038/Ni1247

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agence Nationale de la Recherche (ANR-08-CESA-017), the Centre National de la Recherche Scientifique, the Université de Strasbourg, and the Réseau Alsace de Laboratoires en Ingénierie et Sciences pour l’Environnement. Carole Ronzani is the recipient of a PhD grant from the Ministère de l’Education Nationale, de la Recherche et de la Technologie. The authors thank the laboratory of the Unité de Pneumologie, d’Allergologie et de Pathologie respiratoire de l’environnement at the Hôpitaux Universitaires de Strasbourg, for endotoxin assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Pons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronzani, C., Casset, A. & Pons, F. Exposure to multi-walled carbon nanotubes results in aggravation of airway inflammation and remodeling and in increased production of epithelium-derived innate cytokines in a mouse model of asthma. Arch Toxicol 88, 489–499 (2014). https://doi.org/10.1007/s00204-013-1116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1116-3

Keywords

Navigation