Skip to main content

Advertisement

Log in

Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cisplatin is a highly effective antitumor agent whose clinical application is limited by the inherent nephrotoxicity. The current measures of nephroprotection used in patients receiving cisplatin are not satisfactory, and studies have focused on the investigation of new possible protective strategies. Many pathways involved in cisplatin nephrotoxicity have been delineated and proposed as targets for nephroprotection, and many new potentially protective agents have been reported. The multiple pathways which lead to renal damage and renal cell death have points of convergence and share some common modulators. The most frequent event among all the described pathways is the oxidative stress that acts as both a trigger and a result. The most exploited pathways, the proposed protective strategies, the achievements obtained so far as well as conflicting data are summarized and discussed in this review, providing a general view of the knowledge accumulated with past and recent research on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams JM, Cory S (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26:61–66

    Article  PubMed  CAS  Google Scholar 

  • Ajith TA, Abhishek G, Roshny D, Sudheesh NP (2009) Co-supplementation of single and multi doses of vitamins C and E ameliorates cisplatin-induced acute renal failure in mice. Exp Toxicol Pathol 61:565–571

    Article  PubMed  CAS  Google Scholar 

  • Ali BH, Al Moundhri MS (2006) Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol 44:1173–1183

    Article  PubMed  CAS  Google Scholar 

  • Antunes LM, Darin JD, Bianchi MD (2000) Protective effects of vitamin c against cisplatin-induced nephrotoxicity and lipid peroxidation in adult rats: a dose-dependent study. Pharmacol Res 41:405–411

    Article  PubMed  CAS  Google Scholar 

  • Arany I, Safirstein RL (2003) Cisplatin nephrotoxicity. Semin Nephrol 23:460–464

    Article  PubMed  CAS  Google Scholar 

  • Atessahin A, Yilmaz S, Karahan I, Ceribasi AO, Karaoglu A (2005) Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology 212:116–123

    Article  PubMed  CAS  Google Scholar 

  • Badary OA, Abdel-Maksoud S, Ahmed WA, Owieda GH (2005) Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci 76:2125–2135

    Article  PubMed  CAS  Google Scholar 

  • Bae EH, Lee J, Ma SK, Kim IJ, Frokiaer J, Nielsen S, Kim SY, Kim SW (2009) Alpha-lipoic acid prevents cisplatin-induced acute kidney injury in rats. Nephrol Dial Transplant 24:2692–2700

    Article  PubMed  CAS  Google Scholar 

  • Baek SM, Kwon CH, Kim JH, Woo JS, Jung JS, Kim YK (2003) Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells. J Lab Clin Med 142:178–186

    Article  PubMed  CAS  Google Scholar 

  • Bajorin DF, Bosl GJ, Alcock NW, Niedzwiecki D, Gallina E, Shurgot B (1986) Pharmacokinetics of cis-diamminedichloroplatinum(II) after administration in hypertonic saline. Cancer Res 46:5969–5972

    PubMed  CAS  Google Scholar 

  • Baliga R, Zhang Z, Baliga M, Ueda N, Shah SV (1998) Role of cytochrome P-450 as a source of catalytic iron in cisplatin-induced nephrotoxicity. Kidney Int 54:1562–1569

    Article  PubMed  CAS  Google Scholar 

  • Barnes PJ (1997) Nuclear factor-kappa B. Int J Biochem Cell Biol 29:867–870

    Article  PubMed  CAS  Google Scholar 

  • Bauer MK, Vogt M, Los M, Siegel J, Wesselborg S, Schulze-Osthoff K (1998) Role of reactive oxygen intermediates in activation-induced CD95 (APO-1/Fas) ligand expression. J Biol Chem 273:8048–8055

    Article  PubMed  CAS  Google Scholar 

  • Beehler CJ, Ely ME, Rutledge KS, Simchuk ML, Reiss OK, Shanley PF, Repine JE (1994) Toxic effects of dimethylthiourea in rats. J Lab Clin Med 123:73–80

    PubMed  CAS  Google Scholar 

  • Benoehr P, Krueth P, Bokemeyer C, Grenz A, Osswald H, Hartmann JT (2005) Nephroprotection by theophylline in patients with cisplatin chemotherapy: a randomized, single-blinded, placebo-controlled trial. J Am Soc Nephrol 16:452–458

    Article  PubMed  CAS  Google Scholar 

  • Beyaert R, Fiers W (1994) Molecular mechanisms of tumor necrosis factor-induced cytotoxicity. What we do understand and what we do not. FEBS Lett 340:9–16

    Article  PubMed  CAS  Google Scholar 

  • Block KI, Gyllenhaal C (2005) Commentary: the pharmacological antioxidant amifostine—implications of recent research for integrative cancer care. Integr Cancer Ther 4:329–351

    Article  PubMed  CAS  Google Scholar 

  • Bonegio R, Lieberthal W (2002) Role of apoptosis in the pathogenesis of acute renal failure. Curr Opin Nephrol Hypertens 11:301–308

    Article  PubMed  Google Scholar 

  • Boven E, Verschraagen M, Hulscher TM, Erkelens CA, Hausheer FH, Pinedo HM, van der Vijgh WJ (2002) BNP7787, a novel protector against platinum-related toxicities, does not affect the efficacy of cisplatin or carboplatin in human tumour xenografts. Eur J Cancer 38:1148–1156

    Article  PubMed  CAS  Google Scholar 

  • Brouwers EE, Huitema AD, Schellens JH, Beijnen JH (2008) The effects of sulfur-containing compounds and gemcitabine on the binding of cisplatin to plasma proteins and DNA determined by inductively coupled plasma mass spectrometry and high performance liquid chromatography-inductively coupled plasma mass spectrometry. Anticancer Drugs 19:621–630

    Article  PubMed  CAS  Google Scholar 

  • Burger H, Loos WJ, Eechoute K, Verweij J, Mathijssen RH, Wiemer EA (2011) Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resist Updat 14:22–34

    Article  PubMed  CAS  Google Scholar 

  • Burns TF, El-Deiry WS (1999) The p53 pathway and apoptosis. J Cell Physiol 181:231–239

    Article  PubMed  CAS  Google Scholar 

  • Campbell NP, Kindler HL (2011) Update on malignant pleural mesothelioma. Semin Respir Crit Care Med 32:102–110

    Article  PubMed  Google Scholar 

  • Campbell MT, Dagher P, Hile KL, Zhang H, Meldrum DR, Rink RC, Meldrum KK (2008) Tumor necrosis factor-alpha induces intrinsic apoptotic signaling during renal obstruction through truncated bid activation. J Urol 180:2694–2700

    Article  PubMed  CAS  Google Scholar 

  • Candelaria M, Garcia-Arias A, Cetina L, Duenas-Gonzalez A (2006) Radiosensitizers in cervical cancer. Cisplatin and beyond. Radiat Oncol 1:15

    Article  CAS  Google Scholar 

  • Caro AA, Cederbaum AI (2004) Oxidative stress, toxicology, and pharmacology of CYP2E1. Annu Rev Pharmacol Toxicol 44:27–42

    Article  PubMed  CAS  Google Scholar 

  • Chang B, Nishikawa M, Sato E, Utsumi K, Inoue M (2002) L-Carnitine inhibits cisplatin-induced injury of the kidney and small intestine. Arch Biochem Biophys 405:55–64

    Article  PubMed  CAS  Google Scholar 

  • Ciarimboli G, Ludwig T, Lang D, Pavenstadt H, Koepsell H, Piechota HJ, Haier J, Jaehde U, Zisowsky J, Schlatter E (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167:1477–1484

    Article  PubMed  CAS  Google Scholar 

  • Cilenti L, Kyriazis GA, Soundarapandian MM, Stratico V, Yerkes A, Park KM, Sheridan AM, Alnemri ES, Bonventre JV, Zervos AS (2005) Omi/HtrA2 protease mediates cisplatin-induced cell death in renal cells. Am J Physiol Renal Physiol 288:F371–F379

    Article  PubMed  CAS  Google Scholar 

  • Cohen SM, Lippard SJ (2001) Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol 67:93–130

    Article  PubMed  CAS  Google Scholar 

  • Conklin KA (2004) Cancer chemotherapy and antioxidants. J Nutr 134:3201S–3204S

    PubMed  CAS  Google Scholar 

  • Cornelison TL, Reed E (1993) Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecol Oncol 50:147–158

    Article  PubMed  CAS  Google Scholar 

  • Cullen KJ, Yang Z, Schumaker L, Guo Z (2007) Mitochondria as a critical target of the chemotheraputic agent cisplatin in head and neck cancer. J Bioenerg Biomembr 39:43–50

    Article  PubMed  CAS  Google Scholar 

  • Cummings BS, McHowat J, Schnellmann RG (2004) Role of an endoplasmic reticulum Ca2+ -independent phospholipase A2 in cisplatin-induced renal cell apoptosis. J Pharmacol Exp Ther 308:921–928

    Article  PubMed  CAS  Google Scholar 

  • Cvitkovic E (1998) Cumulative toxicities from cisplatin therapy and current cytoprotective measures. Cancer Treat Rev 24:265–281

    Article  PubMed  CAS  Google Scholar 

  • Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N, Kroemer G (2000a) Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 476:118–123

    Article  PubMed  CAS  Google Scholar 

  • Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J, Kroemer G (2000b) Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 14:729–739

    PubMed  CAS  Google Scholar 

  • Dillioglugil MO, Maral Kir H, Gulkac MD, Ozon Kanli A, Ozdogan HK, Acar O, Dillioglugil O (2005) Protective effects of increasing vitamin E and a doses on cisplatin-induced oxidative damage to kidney tissue in rats. Urol Int 75:340–344

    Article  PubMed  CAS  Google Scholar 

  • Do Amaral CL, Francescato HD, Coimbra TM, Costa RS, Darin JD, Antunes LM, Bianchi MdeL (2008) Resveratrol attenuates cisplatin-induced nephrotoxicity in rats. Arch Toxicol 82:363–370

    Article  PubMed  CAS  Google Scholar 

  • Dong G, Luo J, Kumar V, Dong Z (2009) Inhibitors of histone deacetylases suppress cisplatin-induced p53 activation and apoptosis in renal tubular cells. Am J Physiol Renal Physiol 298:F293–F300

    Article  PubMed  CAS  Google Scholar 

  • dos Santos OF, Boim MA, Barros EJ, Pirotzky E, Braquet P, Schor N (1991a) Effect of platelet-activating factor antagonist BN 52063 on the nephrotoxicity of cisplatin. Lipids 26:1324–1328

    Article  PubMed  Google Scholar 

  • Dos Santos OF, Boim MA, Barros EJ, Schor N (1991b) Role of platelet activating factor in gentamicin and cisplatin nephrotoxicity. Kidney Int 40:742–747

    Article  PubMed  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    Article  PubMed  CAS  Google Scholar 

  • Dumas M, de Gislain C, d’Athis P, Chadoint-Noudeau V, Escousse A, Guerrin J, Autissier N (1990) Influence of hydration on ultrafilterable platinum kinetics and kidney function in patients treated with cis-diamminedichloroplatinum(II). Cancer Chemother Pharmacol 26:278–282

    Article  PubMed  CAS  Google Scholar 

  • Eastman A (1999) The mechanism of action of cisplatin: from adducts to apoptosis. I. In: Lippert B (ed) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Wiley, New York, pp 111–135

    Google Scholar 

  • El Sabbahy M, Vaidya VS (2011) Ischemic kidney injury and mechanisms of tissue repair. Wiley Interdiscip Rev Syst Biol Med 3:606–618

    Article  PubMed  CAS  Google Scholar 

  • El-Sayed el SM, Abd-Ellah MF, Attia SM (2008) Protective effect of captopril against cisplatin-induced nephrotoxicity in rats. Pak J Pharm Sci 21:255–261

    Google Scholar 

  • Enoksson M, Robertson JD, Gogvadze V, Bu P, Kropotov A, Zhivotovsky B, Orrenius S (2004) Caspase-2 permeabilizes the outer mitochondrial membrane and disrupts the binding of cytochrome c to anionic phospholipids. J Biol Chem 279:49575–49578

    Article  PubMed  CAS  Google Scholar 

  • Faubel S, Ljubanovic D, Reznikov L, Somerset H, Dinarello CA, Edelstein CL (2004) Caspase-1-deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis. Kidney Int 66:2202–2213

    Article  PubMed  CAS  Google Scholar 

  • Faubel S, Lewis EC, Reznikov L, Ljubanovic D, Hoke TS, Somerset H, Oh DJ, Lu L, Klein CL, Dinarello CA, Edelstein CL (2007) Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther 322:8–15

    Article  PubMed  CAS  Google Scholar 

  • Francescato HD, Coimbra TM, Costa RS, Bianchi MdeL (2004) Protective effect of quercetin on the evolution of cisplatin-induced acute tubular necrosis. Kidney Blood Press Res 27:148–158

    Article  PubMed  CAS  Google Scholar 

  • Frick GA, Ballentine R, Driever CW, Kramer WG (1979) Renal excretion kinetics of high-dose cis-dichlorodiammineplatinum(II) administered with hydration and mannitol diuresis. Cancer Treat Rep 63:13–16

    PubMed  CAS  Google Scholar 

  • Gale GR, Morris CR, Atkins LM, Smith AB (1973) Binding of an antitumor platinum compound to cells as influenced by physical factors and pharmacologically active agents. Cancer Res 33:813–818

    PubMed  CAS  Google Scholar 

  • Gandara DR, Wiebe VJ, Perez EA, Makuch RW, DeGregorio MW (1990) Cisplatin rescue therapy: experience with sodium thiosulfate, WR2721, and diethyldithiocarbamate. Crit Rev Oncol Hematol 10:353–365

    Article  PubMed  CAS  Google Scholar 

  • Gately DP, Howell SB (1993) Cellular accumulation of the anticancer agent cisplatin: a review. Br J Cancer 67:1171–1176

    Article  PubMed  CAS  Google Scholar 

  • Goffin J, Lacchetti C, Ellis PM, Ung YC, Evans WK (2010) First-line systemic chemotherapy in the treatment of advanced non-small cell lung cancer: a systematic review. J Thorac Oncol 5:260–274

    Article  PubMed  Google Scholar 

  • Goldstein RS, Mayor GH (1983) Minireview. The nephrotoxicity of cisplatin. Life Sci 32:685–690

    Article  PubMed  CAS  Google Scholar 

  • Gonzales-Vitale JC, Hayes DM, Cvitkovic E, Sternberg SS (1977) The renal pathology in clinical trials of cis-platinum (II) diamminedichloride. Cancer 39:1362–1371

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez VM, Fuertes MA, Alonso C, Perez JM (2001) Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 59:657–663

    PubMed  CAS  Google Scholar 

  • Goossens V, Grooten J, De Vos K, Fiers W (1995) Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci USA 92:8115–8119

    Article  PubMed  CAS  Google Scholar 

  • Gordon JA, Gattone VH 2nd (1986) Mitochondrial alterations in cisplatin-induced acute renal failure. Am J Physiol 250:F991–F998

    PubMed  CAS  Google Scholar 

  • Guastalla JP, Vermorken JB, Wils JA, George M, Scotto V, Nooij M, ten Bokkel Huinnink WW, Dalesio O, Renard J (1994) Phase II trial for intraperitoneal cisplatin plus intravenous sodium thiosulphate in advanced ovarian carcinoma patients with minimal residual disease after cisplatin-based chemotherapy–a phase II study of the EORTC Gynaecological Cancer Cooperative Group. Eur J Cancer 30A:45–49

    Article  PubMed  CAS  Google Scholar 

  • Han X, Yue J, Chesney RW (2009) Functional TauT protects against acute kidney injury. J Am Soc Nephrol 20:1323–1332

    Article  PubMed  CAS  Google Scholar 

  • Hanigan MH, Devarajan P (2003) Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther 1:47–61

    PubMed  Google Scholar 

  • Hanigan MH, Gallagher BC, Taylor PT Jr, Large MK (1994) Inhibition of gamma-glutamyl transpeptidase activity by acivicin in vivo protects the kidney from cisplatin-induced toxicity. Cancer Res 54:5925–5929

    PubMed  CAS  Google Scholar 

  • Hanigan MH, Lykissa ED, Townsend DM, Ou CN, Barrios R, Lieberman MW (2001) Gamma-glutamyl transpeptidase-deficient mice are resistant to the nephrotoxic effects of cisplatin. Am J Pathol 159:1889–1894

    Article  PubMed  CAS  Google Scholar 

  • Hanigan MH, Deng M, Zhang L, Taylor PT Jr, Lapus MG (2005) Stress response inhibits the nephrotoxicity of cisplatin. Am J Physiol Renal Physiol 288:F125–F132

    Article  PubMed  CAS  Google Scholar 

  • Hannemann J, Duwe J, Baumann K (1991) Iron- and ascorbic acid-induced lipid peroxidation in renal microsomes isolated from rats treated with platinum compounds. Cancer Chemother Pharmacol 28:427–433

    Article  PubMed  CAS  Google Scholar 

  • Hausheer FH, Kanter P, Cao S, Haridas K, Seetharamulu P, Reddy D, Petluru P, Zhao M, Murali D, Saxe JD, Yao S, Martinez N, Zukowski A, Rustum YM (1998) Modulation of platinum-induced toxicities and therapeutic index: mechanistic insights and first- and second-generation protecting agents. Semin Oncol 25:584–599

    PubMed  CAS  Google Scholar 

  • Hausheer FH, Shanmugarajah D, Leverett BD, Chen X, Huang Q, Kochat H, Petluru PN, Parker AR (2010) Mechanistic study of BNP7787-mediated cisplatin nephroprotection: modulation of gamma-glutamyl transpeptidase. Cancer Chemother Pharmacol 65:941–951

    Article  PubMed  CAS  Google Scholar 

  • Hausheer FH, Ding D, Shanmugarajah D, Leverett BD, Huang Q, Chen X, Kochat H, Ayala PY, Petluru PN, Parker AR (2011a) Accumulation of BNP7787 in human renal proximal tubule cells. J Pharm Sci 100:3977–3984

    Article  PubMed  CAS  Google Scholar 

  • Hausheer FH, Parker AR, Petluru PN, Jair KW, Chen S, Huang Q, Chen X, Ayala PY, Shanmugarajah D, Kochat H (2011b) Mechanistic study of BNP7787-mediated cisplatin nephroprotection: modulation of human aminopeptidase N. Cancer Chemother Pharmacol 67:381–391

    Article  PubMed  CAS  Google Scholar 

  • Hayes DM, Cvitkovic E, Golbey RB, Scheiner E, Helson L, Krakoff IH (1977) High dose cis-platinum diammine dichloride: amelioration of renal toxicity by mannitol diuresis. Cancer 39:1372–1381

    Article  PubMed  CAS  Google Scholar 

  • Heidemann HT, Muller S, Mertins L, Stepan G, Hoffmann K, Ohnhaus EE (1989) Effect of aminophylline on cisplatin nephrotoxicity in the rat. Br J Pharmacol 97:313–318

    Article  PubMed  CAS  Google Scholar 

  • Heinecke JW, Kawamura M, Suzuki L, Chait A (1993) Oxidation of low density lipoprotein by thiols: superoxide-dependent and -independent mechanisms. J Lipid Res 34:2051–2061

    PubMed  CAS  Google Scholar 

  • Helm CW, States JC (2009) Enhancing the efficacy of cisplatin in ovarian cancer treatment—could arsenic have a role. J Ovarian Res 2:2

    Article  PubMed  CAS  Google Scholar 

  • Hofmann J, Fiebig HH, Winterhalter BR, Berger DP, Grunicke H (1990) Enhancement of the antiproliferative activity of cis-diamminedichloroplatinum(II) by quercetin. Int J Cancer 45:536–539

    Article  PubMed  CAS  Google Scholar 

  • Hye Khan MA, Abdul Sattar M, Abdullah NA, Johns EJ (2007) Cisplatin-induced nephrotoxicity causes altered renal hemodynamics in Wistar Kyoto and spontaneously hypertensive rats: role of augmented renal alpha-adrenergic responsiveness. Exp Toxicol Pathol 59:253–260

    Article  PubMed  CAS  Google Scholar 

  • Iguchi T, Nishikawa M, Chang B, Muroya O, Sato EF, Nakatani T, Inoue M (2004) Edaravone inhibits acute renal injury and cyst formation in cisplatin-treated rat kidney. Free Radic Res 38:333–341

    Article  PubMed  CAS  Google Scholar 

  • Ikeda S, Fukuzaki A, Kaneto H, Ishidoya S, Orikasa S (1999) Role of protein kinase C in cisplatin nephrotoxicity. Int J Urol 6:245–250

    Article  PubMed  CAS  Google Scholar 

  • Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 99:14298–14302

    Article  PubMed  CAS  Google Scholar 

  • Ismaili N, Amzerin M, Elmajjaoui S, Droz JP, Flechon A, Errihani H (2011a) The role of chemotherapy in the management of bladder cancer. Prog Urol 21:369–382

    Article  PubMed  CAS  Google Scholar 

  • Ismaili N, Amzerin M, Flechon A (2011b) Chemotherapy in advanced bladder cancer: current status and future. J Hematol Oncol 4:35

    Article  PubMed  CAS  Google Scholar 

  • Jackson AM, Rose BD, Graff LG, Jacobs JB, Schwartz JH, Strauss GM, Yang JP, Rudnick MR, Elfenbein IB, Narins RG (1984) Thrombotic microangiopathy and renal failure associated with antineoplastic chemotherapy. Ann Intern Med 101:41–44

    PubMed  CAS  Google Scholar 

  • Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467–2498

    Article  PubMed  CAS  Google Scholar 

  • Jia Z, Wang N, Aoyagi T, Wang H, Liu H, Yang T (2011) Amelioration of cisplatin nephrotoxicity by genetic or pharmacologic blockade of prostaglandin synthesis. Kidney Int 79:77–88

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Dong Z (2008) Regulation and pathological role of p53 in cisplatin nephrotoxicity. J Pharmacol Exp Ther 327:300–307

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Yi X, Hsu S, Wang CY, Dong Z (2004) Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity. Am J Physiol Renal Physiol 287:F1140–F1147

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Wei Q, Wang J, Du Q, Yu J, Zhang L, Dong Z (2006) Regulation of PUMA-alpha by p53 in cisplatin-induced renal cell apoptosis. Oncogene 25:4056–4066

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Wei Q, Pabla N, Dong G, Wang CY, Yang T, Smith SB, Dong Z (2007) Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem Pharmacol 73:1499–1510

    Article  PubMed  CAS  Google Scholar 

  • Johnson AL, Ratajczak C, Haugen MJ, Liu HK, Woods DC (2007) Tumor necrosis factor-related apoptosis inducing ligand expression and activity in hen granulosa cells. Reproduction 133:609–616

    Article  PubMed  CAS  Google Scholar 

  • Jones MM, Basinger MA, Field L, Holscher MA (1991) Coadministration of dimethyl sulfoxide reduces cisplatin nephrotoxicity. Anticancer Res 11:1939–1942

    PubMed  CAS  Google Scholar 

  • Kachadourian R, Leitner HM, Day BJ (2007) Selected flavonoids potentiate the toxicity of cisplatin in human lung adenocarcinoma cells: a role for glutathione depletion. Int J Oncol 31:161–168

    PubMed  CAS  Google Scholar 

  • Kadikoylu G, Bolaman Z, Demir S, Balkaya M, Akalin N, Enli Y (2004) The effects of desferrioxamine on cisplatin-induced lipid peroxidation and the activities of antioxidant enzymes in rat kidneys. Hum Exp Toxicol 23:29–34

    Article  PubMed  CAS  Google Scholar 

  • Katsuda H, Yamashita M, Katsura H, Yu J, Waki Y, Nagata N, Sai Y, Miyamoto K (2010) Protecting cisplatin-induced nephrotoxicity with cimetidine does not affect antitumor activity. Biol Pharm Bull 33:1867–1871

    Article  PubMed  CAS  Google Scholar 

  • Katzenstein HM, Chang KW, Krailo M, Chen Z, Finegold MJ, Rowland J, Reynolds M, Pappo A, London WB, Malogolowkin M (2009) Amifostine does not prevent platinum-induced hearing loss associated with the treatment of children with hepatoblastoma: a report of the Intergroup Hepatoblastoma Study P9645 as a part of the Children’s Oncology Group. Cancer 115:5828–5835

    Article  PubMed  CAS  Google Scholar 

  • Kaushal GP, Kaushal V, Hong X, Shah SV (2001) Role and regulation of activation of caspases in cisplatin-induced injury to renal tubular epithelial cells. Kidney Int 60:1726–1736

    Article  PubMed  CAS  Google Scholar 

  • Kemp G, Rose P, Lurain J, Berman M, Manetta A, Roullet B, Homesley H, Belpomme D, Glick J (1996) Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. J Clin Oncol 14:2101–2112

    PubMed  CAS  Google Scholar 

  • Khan AH, Sattar MA, Abdullah NA, Johns EJ (2007) Influence of cisplatin-induced renal failure on the alpha(1)-adrenoceptor subtype causing vasoconstriction in the kidney of the rat. Eur J Pharmacol 569:110–118

    Article  PubMed  CAS  Google Scholar 

  • Kintzel PE (2001) Anticancer drug-induced kidney disorders. Drug Saf 24:19–38

    Article  PubMed  CAS  Google Scholar 

  • Koyner JL, Sher Ali R, Murray PT (2008) Antioxidants. Do they have a place in the prevention or therapy of acute kidney injury? Nephron Exp Nephrol 109:e109–e117

    Article  PubMed  CAS  Google Scholar 

  • Kruidering M, Maasdam DH, Prins FA, de Heer E, Mulder GJ, Nagelkerke JF (1994) Evaluation of nephrotoxicity in vitro using a suspension of highly purified porcine proximal tubular cells and characterization of the cells in primary culture. Exp Nephrol 2:324–344

    PubMed  CAS  Google Scholar 

  • Kruidering M, Van de Water B, de Heer E, Mulder GJ, Nagelkerke JF (1997) Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain. J Pharmacol Exp Ther 280:638–649

    PubMed  CAS  Google Scholar 

  • Kuhar M, Sen S, Singh N (2006) Role of mitochondria in quercetin-enhanced chemotherapeutic response in human non-small cell lung carcinoma H-520 cells. Anticancer Res 26:1297–1303

    PubMed  CAS  Google Scholar 

  • Kuhlmann MK, Burkhardt G, Kohler H (1997) Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant 12:2478–2480

    Article  PubMed  CAS  Google Scholar 

  • Lau AH (1999) Apoptosis induced by cisplatin nephrotoxic injury. Kidney Int 56:1295–1298

    Article  PubMed  CAS  Google Scholar 

  • Laughton MJ, Halliwell B, Evans PJ, Hoult JR (1989) Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochem Pharmacol 38:2859–2865

    Article  PubMed  CAS  Google Scholar 

  • Launay-Vacher V, Rey JB, Isnard-Bagnis C, Deray G, Daouphars M (2008) Prevention of cisplatin nephrotoxicity: state of the art and recommendations from the European Society of Clinical Pharmacy Special Interest Group on Cancer Care. Cancer Chemother Pharmacol 61:903–909

    Article  PubMed  CAS  Google Scholar 

  • Lee RH, Song JM, Park MY, Kang SK, Kim YK, Jung JS (2001) Cisplatin-induced apoptosis by translocation of endogenous Bax in mouse collecting duct cells. Biochem Pharmacol 62:1013–1023

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim W, Moon SO, Sung MJ, Kim DH, Kang KP, Jang YB, Lee JE, Jang KY, Park SK (2006) Rosiglitazone ameliorates cisplatin-induced renal injury in mice. Nephrol Dial Transplant 21:2096–2105

    Article  PubMed  CAS  Google Scholar 

  • Lehane D, Winston A, Gray R, Daskal Y (1979) The effect of diuretic pre-treatment on clinical, morphological and ultrastructural cis-platinum induced nephrotoxicity. Int J Radiat Oncol Biol Phys 5:1393–1399

    Article  PubMed  CAS  Google Scholar 

  • Li G, Sha SH, Zotova E, Arezzo J, Van de Water T, Schacht J (2002) Salicylate protects hearing and kidney function from cisplatin toxicity without compromising its oncolytic action. Lab Invest 82:585–596

    Article  PubMed  CAS  Google Scholar 

  • Li M, Balamuthusamy S, Khan AM, Maderdrut JL, Simon EE, Batuman V (2010) Pituitary adenylate cyclase-activating polypeptide ameliorates cisplatin-induced acute kidney injury. Peptides 31:592–602

    Article  PubMed  CAS  Google Scholar 

  • Li M, Balamuthusamy S, Khan AM, Maderdrut JL, Simon EE, Batuman V (2011) Pituitary adenylate cyclase-activating polypeptide prevents cisplatin-induced renal failure. J Mol Neurosci 43:58–66

    Article  PubMed  CAS  Google Scholar 

  • Lieberthal W, Triaca V, Levine J (1996) Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol 270:F700–F708

    PubMed  CAS  Google Scholar 

  • Lieberthal W, Menza SA, Levine JS (1998) Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am J Physiol 274:F315–F327

    PubMed  CAS  Google Scholar 

  • Lin X, Okuda T, Holzer A, Howell SB (2002) The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae. Mol Pharmacol 62:1154–1159

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Baliga R (2003) Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney Int 63:1687–1696

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Baliga R (2005) Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol 16:1985–1992

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Baliga M, Baliga R (2002) Effect of cytochrome P450 2E1 inhibitors on cisplatin-induced cytotoxicity to renal proximal tubular epithelial cells. Anticancer Res 22:863–868

    PubMed  Google Scholar 

  • Lopez-Novoa JM (1999) Potential role of platelet activating factor in acute renal failure. Kidney Int 55:1672–1682

    Article  PubMed  CAS  Google Scholar 

  • Losonczy G, Mathe C, Muller V, Szondy K, Moldvay J (2010) Incidence, risk factors and prevention of cisplatin-induced nephrotoxicity in patients with lung cancer. Magy Onkol 54:289–296

    Article  PubMed  Google Scholar 

  • Ludwig T, Riethmuller C, Gekle M, Schwerdt G, Oberleithner H (2004) Nephrotoxicity of platinum complexes is related to basolateral organic cation transport. Kidney Int 66:196–202

    Article  PubMed  CAS  Google Scholar 

  • Luke DR, Vadiei K, Lopez-Berestein G (1992) Role of vascular congestion in cisplatin-induced acute renal failure in the rat. Nephrol Dial Transplant 7:1–7

    PubMed  CAS  Google Scholar 

  • Lynch ED, Gu R, Pierce C, Kil J (2005) Reduction of acute cisplatin ototoxicity and nephrotoxicity in rats by oral administration of allopurinol and ebselen. Hear Res 201:81–89

    Article  PubMed  CAS  Google Scholar 

  • Masereeuw R, Terlouw SA, van Aubel RA, Russel FG, Miller DS (2000) Endothelin B receptor-mediated regulation of ATP-driven drug secretion in renal proximal tubule. Mol Pharmacol 57:59–67

    PubMed  CAS  Google Scholar 

  • Matsushima H, Yonemura K, Ohishi K, Hishida A (1998) The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. J Lab Clin Med 131:518–526

    Article  PubMed  CAS  Google Scholar 

  • Milner LS, Wei SH, Houser MT (1993) Enhancement of renal and hepatic glutathione metabolism by dimethylthiourea. Toxicol Lett 66:117–123

    Article  PubMed  CAS  Google Scholar 

  • Mishima K, Baba A, Matsuo M, Itoh Y, Oishi R (2006) Protective effect of cyclic AMP against cisplatin-induced nephrotoxicity. Free Radic Biol Med 40:1564–1577

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  • Nick JA, Avdi NJ, Young SK, Lehman LA, McDonald PP, Frasch SC, Billstrom MA, Henson PM, Johnson GL, Worthen GS (1999) Selective activation and functional significance of p38alpha mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils. J Clin Invest 103:851–858

    Article  PubMed  CAS  Google Scholar 

  • Norbury CJ, Zhivotovsky B (2004) DNA damage-induced apoptosis. Oncogene 23:2797–2808

    Article  PubMed  CAS  Google Scholar 

  • Old LJ (1988) Tumor necrosis factor. Sci Am 258(59–60):69–75

    Google Scholar 

  • Olivero OA, Chang PK, Lopez-Larraza DM, Semino-Mora MC, Poirier MC (1997) Preferential formation and decreased removal of cisplatin-DNA adducts in Chinese hamster ovary cell mitochondrial DNA as compared to nuclear DNA. Mutat Res 391:79–86

    Article  PubMed  CAS  Google Scholar 

  • Ormstad K, Uehara N (1982) Renal transport and disposition of Na-2-mercaptoethane sulfonate disulfide (dimesna) in the rat. FEBS Lett 150:354–358

    Article  PubMed  CAS  Google Scholar 

  • Ozen S, Akyol O, Iraz M, Sogut S, Ozugurlu F, Ozyurt H, Odaci E, Yildirim Z (2004) Role of caffeic acid phenethyl ester, an active component of propolis, against cisplatin-induced nephrotoxicity in rats. J Appl Toxicol 24:27–35

    Article  PubMed  CAS  Google Scholar 

  • Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007

    Article  PubMed  CAS  Google Scholar 

  • Pabla N, Murphy RF, Liu K, Dong Z (2009) The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am J Physiol Renal Physiol 296:F505–F511

    Article  PubMed  CAS  Google Scholar 

  • Pabla N, Dong G, Jiang M, Huang S, Kumar MV, Messing RO, Dong Z (2011) Inhibition of PKCdelta reduces cisplatin-induced nephrotoxicity without blocking chemotherapeutic efficacy in mouse models of cancer. J Clin Invest 121:2709–2722

    Article  PubMed  CAS  Google Scholar 

  • Park MS, De Leon M, Devarajan P (2002) Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol 13:858–865

    Article  PubMed  CAS  Google Scholar 

  • Petrosillo G, Ruggiero FM, Paradies G (2003) Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J 17:2202–2208

    Article  PubMed  CAS  Google Scholar 

  • Peyrou M, Hanna PE, Cribb AE (2007) Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol Sci 99:346–353

    Article  PubMed  CAS  Google Scholar 

  • Pirotzky E, Guilmard C, Sidoti C, Ivanow F, Principe P, Braquet P (1990) Platelet-activating factor antagonist, BN-52021 protects against cis-diamminedichloroplatinum nephrotoxicity in the rat. Ren Fail 12:171–176

    Article  PubMed  CAS  Google Scholar 

  • Ramesh G, Reeves WB (2002) TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 110:835–842

    PubMed  CAS  Google Scholar 

  • Ramesh G, Reeves WB (2003) TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am J Physiol Renal Physiol 285:F610–F618

    PubMed  CAS  Google Scholar 

  • Ramesh G, Reeves WB (2005) p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am J Physiol Renal Physiol 289:F166–F174

    Article  PubMed  CAS  Google Scholar 

  • Ries F, Klastersky J (1986) Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am J Kidney Dis 8:368–379

    PubMed  CAS  Google Scholar 

  • Rjiba-Touati K, Ayed-Boussema I, Bouaziz C, Belarbia A, Azzabi A, Achour A, Hassen W, Bacha H (2012) Protective effect of erythropoietin against cisplatin-induced nephrotoxicity in rats: antigenotoxic and antiapoptotic effect. Drug Chem Toxicol 35:89–95

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues MA, Rodrigues JL, Martins NM, Barbosa F, Curti C, Santos NA, Santos AC (2010) Carvedilol protects against the renal mitochondrial toxicity induced by cisplatin in rats. Mitochondrion 10:46–53

    Google Scholar 

  • Rodrigues MA, Rodrigues JL, Martins NM, Barbosa F, Curti C, Santos NA, Santos AC (2011) Carvedilol protects against cisplatin-induced oxidative stress, redox state unbalance and apoptosis in rat kidney mitochondria. Chem Biol Interact 189:45–51

    Google Scholar 

  • Rosenberg B (1985) Fundamental studies with cisplatin. Cancer 55:2303–2306

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg B, Vancamp L, Krigas T (1965) Inhibition of cell division in Escherichia Coli by electrolysis products from a platinum electrode. Nature 205:698–699

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg B, Renshaw E, Vancamp L, Hartwick J, Drobnik J (1967) Platinum-induced filamentous growth in Escherichia coli. J Bacteriol 93:716–721

    PubMed  CAS  Google Scholar 

  • Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386

    Article  PubMed  CAS  Google Scholar 

  • Sadzuka Y, Shoji T, Takino Y (1992) Mechanism of the increase in lipid peroxide induced by cisplatin in the kidneys of rats. Toxicol Lett 62:293–300

    Article  PubMed  CAS  Google Scholar 

  • Saleh S, Ain-Shoka AA, El-Demerdash E, Khalef MM (2009) Protective effects of the angiotensin II receptor blocker losartan on cisplatin-induced kidney injury. Chemotherapy 55:399–406

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Gonzalez PD, Lopez-Hernandez FJ, Lopez-Novoa JM, Morales AI (2011a) An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit Rev Toxicol 41:803–821

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Gonzalez PD, Lopez-Hernandez FJ, Perez-Barriocanal F, Morales AI, Lopez-Novoa JM (2011b) Quercetin reduces cisplatin nephrotoxicity in rats without compromising its anti-tumour activity. Nephrol Dial Transplant 26:3484–3495

    Article  PubMed  CAS  Google Scholar 

  • Santos NA (2012) Oxidants and inhibition of cisplatin-induced kidney injury: role of mitochondria. In: Spitz DR (ed) Oxidative Stress in Cancer Biology and Therapy, 1st edn. Springer, New York, pp 407–425

    Chapter  Google Scholar 

  • Santos NA, Catao CS, Martins NM, Curti C, Bianchi ML, Santos AC (2007) Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch Toxicol 81:495–504

    Article  PubMed  CAS  Google Scholar 

  • Santos NA, Bezerra CS, Martins NM, Curti C, Bianchi ML, Santos AC (2008) Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Cancer Chemother Pharmacol 61:145–155

    Article  PubMed  CAS  Google Scholar 

  • Santoso JT, Lucci JA 3rd, Coleman RL, Schafer I, Hannigan EV (2003) Saline, mannitol, and furosemide hydration in acute cisplatin nephrotoxicity: a randomized trial. Cancer Chemother Pharmacol 52:13–18

    Article  PubMed  CAS  Google Scholar 

  • Sastry J, Kellie SJ (2005) Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatr Hematol Oncol 22:441–445

    Article  PubMed  CAS  Google Scholar 

  • Satoh M, Kashihara N, Fujimoto S, Horike H, Tokura T, Namikoshi T, Sasaki T, Makino H (2003) A novel free radical scavenger, edarabone, protects against cisplatin-induced acute renal damage in vitro and in vivo. J Pharmacol Exp Ther 305:1183–1190

    Article  PubMed  CAS  Google Scholar 

  • Schenellmann RG (2001) Toxic responses of the kidney. In: Kalassen CD (ed) Casarett and Doull’s toxicology. The basic science of poisons, 6th edn. McGraw-Hill, New York, pp 491–514

    Google Scholar 

  • Schmalhausen EV, Zhlobek EB, Shalova IN, Firuzi O, Saso L, Muronetz VI (2007) Antioxidant and prooxidant effects of quercetin on glyceraldehyde-3-phosphate dehydrogenase. Food Chem Toxicol 45:1988–1993

    Article  PubMed  CAS  Google Scholar 

  • Schrier RW, Chen YC, Cadnapaphornchai MA (2004) From finch to fish to man: role of aquaporins in body fluid and brain water regulation. Neuroscience 129:897–904

    Article  PubMed  CAS  Google Scholar 

  • Sergediene E, Jonsson K, Szymusiak H, Tyrakowska B, Rietjens IM, Cenas N (1999) Prooxidant toxicity of polyphenolic antioxidants to HL-60 cells: description of quantitative structure-activity relationships. FEBS Lett 462:392–396

    Article  PubMed  CAS  Google Scholar 

  • Servais H, Ortiz A, Devuyst O, Denamur S, Tulkens PM, Mingeot-Leclercq MP (2008) Renal cell apoptosis induced by nephrotoxic drugs: cellular and molecular mechanisms and potential approaches to modulation. Apoptosis 13:11–32

    Article  PubMed  CAS  Google Scholar 

  • Seth R, Yang C, Kaushal V, Shah SV, Kaushal GP (2005) p53-dependent caspase-2 activation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury. J Biol Chem 280:31230–31239

    Article  PubMed  CAS  Google Scholar 

  • Sharma H, Sen S, Singh N (2005) Molecular pathways in the chemosensitization of cisplatin by quercetin in human head and neck cancer. Cancer Biol Ther 4:949–955

    Article  PubMed  CAS  Google Scholar 

  • Sharp PA (2003) Ctr1 and its role in body copper homeostasis. Int J Biochem Cell Biol 35:288–291

    Article  PubMed  CAS  Google Scholar 

  • Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277:818–821

    Article  PubMed  CAS  Google Scholar 

  • Sleijfer DT, Offerman JJ, Mulder NH, Verweij M, van der Hem GK, Schraffordt Koops HS, Meijer S (1987) The protective potential of the combination of verapamil and cimetidine on cisplatin-induced nephrotoxicity in man. Cancer 60:2823–2828

    Article  PubMed  CAS  Google Scholar 

  • Somani SM, Husain K, Whitworth C, Trammell GL, Malafa M, Rybak LP (2000) Dose-dependent protection by lipoic acid against cisplatin-induced nephrotoxicity in rats: antioxidant defense system. Pharmacol Toxicol 86:234–241

    Article  PubMed  CAS  Google Scholar 

  • Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245

    Article  PubMed  CAS  Google Scholar 

  • Szlosarek PW, Balkwill FR (2003) Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol 4:565–573

    Article  PubMed  CAS  Google Scholar 

  • Tanihara Y, Masuda S, Katsura T, Inui K (2009) Protective effect of concomitant administration of imatinib on cisplatin-induced nephrotoxicity focusing on renal organic cation transporter OCT2. Biochem Pharmacol 78:1263–1271

    Article  PubMed  CAS  Google Scholar 

  • Tarladacalisir YT, Kanter M, Uygun M (2008) Protective effects of vitamin C on cisplatin-induced renal damage: a light and electron microscopic study. Ren Fail 30:1–8

    Article  PubMed  CAS  Google Scholar 

  • Tirosh O, Katzhendler Y, Barenholz Y, Ginsburg I, Kohen R (1996) Antioxidant properties of amidothionophosphates: novel antioxidant molecules. Free Radic Biol Med 20:421–432

    Article  PubMed  CAS  Google Scholar 

  • Togna GI, Togna AR, Franconi M, Caprino L (2000) Cisplatin triggers platelet activation. Thromb Res 99:503–509

    Article  PubMed  CAS  Google Scholar 

  • Townsend DM, Hanigan MH (2002) Inhibition of gamma-glutamyl transpeptidase or cysteine S-conjugate beta-lyase activity blocks the nephrotoxicity of cisplatin in mice. J Pharmacol Exp Ther 300:142–148

    Article  PubMed  CAS  Google Scholar 

  • Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH (2003) Metabolism of Cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol 14:1–10

    Article  PubMed  CAS  Google Scholar 

  • Treskes M, Nijtmans LG, Fichtinger-Schepman AM, van der Vijgh WJ (1992) Effects of the modulating agent WR2721 and its main metabolites on the formation and stability of cisplatin-DNA adducts in vitro in comparison to the effects of thiosulphate and diethyldithiocarbamate. Biochem Pharmacol 43:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Tsuruya K, Ninomiya T, Tokumoto M, Hirakawa M, Masutani K, Taniguchi M, Fukuda K, Kanai H, Kishihara K, Hirakata H, Iida M (2003) Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death. Kidney Int 63:72–82

    Article  PubMed  CAS  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  PubMed  CAS  Google Scholar 

  • Ueda N, Kaushal GP, Shah SV (2000) Apoptotic mechanisms in acute renal failure. Am J Med 108:403–415

    Article  PubMed  CAS  Google Scholar 

  • Vondalova Blanarova O, Jelinkova I, Szoor A, Skender B, Soucek K, Horvath V, Vaculova A, Andera L, Sova P, Szollosi J, Hofmanova J, Vereb G, Kozubik A (2011) Cisplatin and a potent platinum(IV) complex-mediated enhancement of TRAIL-induced cancer cells killing is associated with modulation of upstream events in the extrinsic apoptotic pathway. Carcinogenesis 32:42–51

    Article  PubMed  CAS  Google Scholar 

  • Wainford RD, Weaver RJ, Stewart KN, Brown P, Hawksworth GM (2008) Cisplatin nephrotoxicity is mediated by gamma glutamyltranspeptidase, not via a C-S lyase governed biotransformation pathway. Toxicology 249:184–193

    Article  PubMed  CAS  Google Scholar 

  • Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22:8628–8633

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320

    Article  PubMed  CAS  Google Scholar 

  • Ward JP (1975) Gamma-glutamyl transpeptidase. A sensitive indicator of renal ischaemic injury in experimental animals and renal homograft rejection in man. Ann R Coll Surg Engl 57:248–261

    PubMed  CAS  Google Scholar 

  • Wei Q, Dong G, Franklin J, Dong Z (2007a) The pathological role of Bax in cisplatin nephrotoxicity. Kidney Int 72:53–62

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Dong G, Yang T, Megyesi J, Price PM, Dong Z (2007b) Activation and involvement of p53 in cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol 293:F1282–F1291

    Article  PubMed  CAS  Google Scholar 

  • Werner M, Costa MJ, Mitchell LG, Nayar R (1995) Nephrotoxicity of xenobiotics. Clin Chim Acta 237:107–154

    Article  PubMed  CAS  Google Scholar 

  • Winston JA, Safirstein R (1985) Reduced renal blood flow in early cisplatin-induced acute renal failure in the rat. Am J Physiol 249:F490–F496

    PubMed  CAS  Google Scholar 

  • Wong E, Giandomenico CM (1999) Current status of platinum-based antitumor drugs. Chem Rev 99:2451–2466

    Article  PubMed  CAS  Google Scholar 

  • Wu XX, Kakehi Y (2009) Enhancement of lexatumumab-induced apoptosis in human solid cancer cells by Cisplatin in caspase-dependent manner. Clin Cancer Res 15:2039–2047

    Article  PubMed  CAS  Google Scholar 

  • Wu YJ, Muldoon LL, Neuwelt EA (2005) The chemoprotective agent N-acetylcysteine blocks cisplatin-induced apoptosis through caspase signaling pathway. J Pharmacol Exp Ther 312:424–431

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa T, Eguchi S, Matsumoto T, Yamakawa Y, Numaguchi K, Miyata I, Reynolds CM, Motley ED, Inagami T (1999) Intracellular signaling in rat cultured vascular smooth muscle cells: roles of nuclear factor-kappaB and p38 mitogen-activated protein kinase on tumor necrosis factor-alpha production. Endocrinology 140:3562–3572

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Schumaker LM, Egorin MJ, Zuhowski EG, Guo Z, Cullen KJ (2006) Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Clin Cancer Res 12:5817–5825

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Kaushal V, Haun RS, Seth R, Shah SV, Kaushal GP (2008) Transcriptional activation of caspase-6 and -7 genes by cisplatin-induced p53 and its functional significance in cisplatin nephrotoxicity. Cell Death Differ 15:530–544

    Article  PubMed  CAS  Google Scholar 

  • Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334:115–124

    Article  PubMed  Google Scholar 

  • Yee MS, Blakley BW, Begleiter A, Leith M (2008) Delayed sodium thiosulphate administration reduces cisplatin efficacy on mouse EMT6 tumour cells in vitro. J Otolaryngol Head Neck Surg 37:638–641

    PubMed  Google Scholar 

  • Yonezawa A, Masuda S, Nishihara K, Yano I, Katsura T, Inui K (2005) Association between tubular toxicity of cisplatin and expression of organic cation transporter rOCT2 (Slc22a2) in the rat. Biochem Pharmacol 70:1823–1831

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Hanigan MH (2003) Role of cysteine S-conjugate beta-lyase in the metabolism of cisplatin. J Pharmacol Exp Ther 306:988–994

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cardozo dos Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, N.A.G., Carvalho Rodrigues, M.A., Martins, N.M. et al. Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol 86, 1233–1250 (2012). https://doi.org/10.1007/s00204-012-0821-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0821-7

Keywords

Navigation