Skip to main content
Log in

Systematic review and meta-analysis of the efficacy of clinically tested protectants of cisplatin nephrotoxicity

  • Clinical Trial
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Introduction

Cisplatin is a potent antineoplastic drug that has been widely used to treat a number of solid tumors. However, a high incidence of renal damage observed in patients has led researchers to search for alternate strategies that prevent or at least reduce the cisplatin-induced nephrotoxicity. The objective of the present study was to conduct a systematic review and a subsequent meta-analysis to evaluate and identify compounds with effective antitumor activity and lesser side effects that could provide protection against cisplatin-induced nephrotoxicity.

Methods

The study included all placebo-controlled trials published up to December 2017 that met the inclusion criteria. A total of 22 articles were finally included to extract the following information: number of patients, doses of cisplatin and protectant, qualitative (acute kidney injury incidence) and quantitative (plasma creatinine, blood urea nitrogen, and creatinine clearance) indicators of renal function. The odds ratio or the mean difference (95% confidence interval) of each parameter was calculated for each study and group of studies.

Results

The results of this meta-analysis show that there is great variability in the nephroprotective capacity of a variety of products evaluated. Of all the compounds tested, only magnesium sulfate and cystone were found to exert protective effects. However, more studies need to be conducted to confirm these results.

Conclusions

The administration of 1 g of Mg i.v. seems to be the best strategy for the prevention of cisplatin nephrotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chertow GM, Lee J, Kuperman GJ, Burdick E, Horsky J, Seger DL, Lee R, Mekala A, Song J, Komaroff AL, Bates DW (2001) Guided medication dosing for inpatients with renal insufficiency. JAMA 286:2839–2844

    Article  CAS  PubMed  Google Scholar 

  2. Liangos O, Wald R, O’Bell JW et al (2006) Epidemiology and outcomes of acute renal failure in hospitalized patients: a national survey. Clin J Am Soc Nephrol CJASN 1:43–51. https://doi.org/10.2215/CJN.00220605

    Article  PubMed  Google Scholar 

  3. Cameron LK, Lei K, Smith S, Doyle NL, Doyle JF, Flynn K, Purchase N, Smith J, Chan K, Kamara F, Kidane NG, Forni LG, Harrington D, Hampson G, Ostermann M (2017) Vitamin D levels in critically ill patients with acute kidney injury: a protocol for a prospective cohort study (VID-AKI). BMJ Open 7:e016486. https://doi.org/10.1136/bmjopen-2017-016486

    Article  PubMed  PubMed Central  Google Scholar 

  4. Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, Jaber BL, Acute Kidney Injury Advisory Group of the American Society of Nephrology (2013) World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol CJASN 8:1482–1493. https://doi.org/10.2215/CJN.00710113

    Article  PubMed  Google Scholar 

  5. Beker BM, Corleto MG, Fieiras C, Musso CG (2018) Novel acute kidney injury biomarkers: their characteristics, utility and concerns. Int Urol Nephrol 50:1–9. https://doi.org/10.1007/s11255-017-1781-x

    Article  CAS  Google Scholar 

  6. Izzedine H, Perazella MA (2017) Anticancer drug-induced acute kidney injury. Kidney Int Rep 2:504–514. https://doi.org/10.1016/j.ekir.2017.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  7. Silver SA, Chertow GM (2017) The economic consequences of acute kidney injury. Nephron 137:297–301. https://doi.org/10.1159/000475607

    Article  PubMed  Google Scholar 

  8. Kerr M, Bedford M, Matthews B, O’Donoghue D (2014) The economic impact of acute kidney injury in England. Nephrol Dial Transplant 29:1362–1368. https://doi.org/10.1093/ndt/gfu016

    Article  PubMed  Google Scholar 

  9. Mehta RL, Awdishu L, Davenport A, Murray PT, Macedo E, Cerda J, Chakaravarthi R, Holden AL, Goldstein SL (2015) Phenotype standardization for drug-induced kidney disease. Kidney Int 88:226–234. https://doi.org/10.1038/ki.2015.115

    Article  PubMed  PubMed Central  Google Scholar 

  10. Markman M (2003) Toxicities of the platinum antineoplastic agents. Expert Opin Drug Saf 2:597–607

    Article  CAS  PubMed  Google Scholar 

  11. Aminian A, Javadi S, Rahimian R, Dehpour AR, Asadi Amoli F, Moghaddas P, Ejtemaei Mehr S (2016) Enhancement of cisplatin nephrotoxicity by morphine and its attenuation by the opioid antagonist naltrexone. Acta Med Iran 54:422–429

    PubMed  Google Scholar 

  12. Karakoc HTE, Altintas R, Parlakpinar H et al (2015) Protective effects of molsidomine against cisplatin-induced nephrotoxicity. Adv Clin Exp Med Off Organ Wroclaw Med Univ 24:585–593

    Article  Google Scholar 

  13. Liu M, Jia Z, Sun Y, Zhang A, Yang T (2016) A H 2 S donor GYY4137 exacerbates cisplatin-induced nephrotoxicity in mice. Mediat Inflamm 2016:8145785. https://doi.org/10.1155/2016/8145785

    Article  CAS  Google Scholar 

  14. Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS, Doetsch PW (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One 8:e81162. https://doi.org/10.1371/journal.pone.0081162

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ito Y, Arahata Y, Goto Y, Hirayama M, Nagamutsu M, Yasuda T, Yanagi T, Sobue G (1998) Cisplatin neurotoxicity presenting as reversible posterior leukoencephalopathy syndrome. AJNR Am J Neuroradiol 19:415–417

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsang RY, Al-Fayea T, Au H-J (2009) Cisplatin overdose: toxicities and management. Drug Saf 32:1109–1122. https://doi.org/10.2165/11316640-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  17. Ashrafi F, Ebrahimi Z, Nematbakhsh M (2017) Effect of short hydration on cisplatin-induced nephrotoxicity in cancer patients: a retrospective study. Int J Hematol-Oncol Stem Cell Res 11:262–267

    PubMed  PubMed Central  Google Scholar 

  18. Daugaard G, Abildgaard U (1989) Cisplatin nephrotoxicity. A review. Cancer Chemother Pharmacol 25:1–9

    Article  CAS  PubMed  Google Scholar 

  19. Kollmannsberger C, Kuzcyk M, Mayer F, Hartmann JT, Kanz L, Bokemeyer C (1999) Late toxicity following curative treatment of testicular cancer. Semin Surg Oncol 17:275–281

    Article  CAS  PubMed  Google Scholar 

  20. Sánchez-González PD, López-Hernández FJ, López-Novoa JM, Morales AI (2011) An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit Rev Toxicol 41:803–821. https://doi.org/10.3109/10408444.2011.602662

    Article  CAS  PubMed  Google Scholar 

  21. Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334:115–124. https://doi.org/10.1097/MAJ.0b013e31812dfe1e

    Article  PubMed  Google Scholar 

  22. Sancho-Martínez SM, Prieto-García L, Prieto M, López-Novoa JM, López-Hernández FJ (2012) Subcellular targets of cisplatin cytotoxicity: an integrated view. Pharmacol Ther 136:35–55. https://doi.org/10.1016/j.pharmthera.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  23. Sancho-Martínez SM, Prieto-García L, Prieto M, Fuentes-Calvo I, López-Novoa JM, Morales AI, Martínez-Salgado C, López-Hernández FJ (2018) N-acetylcysteine transforms necrosis into apoptosis and affords tailored protection from cisplatin cytotoxicity. Toxicol Appl Pharmacol 349:83–93. https://doi.org/10.1016/j.taap.2018.04.010

    Article  CAS  PubMed  Google Scholar 

  24. Hayati F, Hossainzadeh M, Shayanpour S et al (2015) Prevention of cisplatin nephrotoxicity. J Nephropharmacology 5:57–60

    Google Scholar 

  25. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101. https://doi.org/10.2307/2533446

    Article  CAS  PubMed  Google Scholar 

  26. Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suurmond R, van Rhee H, Hak T (2017) Introduction, comparison, and validation of Meta-Essentials: a free and simple tool for meta-analysis. Res Synth Methods 8:537–553. https://doi.org/10.1002/jrsm.1260

    Article  PubMed  PubMed Central  Google Scholar 

  28. Benoehr P, Krueth P, Bokemeyer C, Grenz A, Osswald H, Hartmann JT (2005) Nephroprotection by theophylline in patients with cisplatin chemotherapy: a randomized, single-blinded, placebo-controlled trial. J Am Soc Nephrol JASN 16:452–458. https://doi.org/10.1681/ASN.2004030225

    Article  CAS  PubMed  Google Scholar 

  29. Bodnar L, Wcislo G, Gasowska-Bodnar A et al (2008) Renal protection with magnesium subcarbonate and magnesium sulphate in patients with epithelial ovarian cancer after cisplatin and paclitaxel chemotherapy: a randomised phase II study. Eur J Cancer Oxf Engl 1990 44:2608–2614. https://doi.org/10.1016/j.ejca.2008.08.005

    Article  CAS  Google Scholar 

  30. El-Ghiaty MA, Ibrahim OMH, Abdou SM, Hussein FZ (2014) Evaluation of the protective effect of cystone against cisplatin-induced nephrotoxicity in cancer patients, and its influence on cisplatin antitumor activity. Int Urol Nephrol 46:1367–1373. https://doi.org/10.1007/s11255-014-0644-y

    Article  CAS  PubMed  Google Scholar 

  31. Ghorbani A, Omidvar B, Parsi A (2013) Protective effect of selenium on cisplatin induced nephrotoxicity: a double-blind controlled randomized clinical trial. J Nephropathol 2:129–134. https://doi.org/10.12860/JNP.2013.21

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hayashi M, Numaguchi M, Watabe H, Enomoto H, Yaoi Y (1997) Cisplatin-induced nephrotoxicity and the protective effect of fosfomycin on it as demonstrated by using a crossover study of urinary metabolite levels. Acta Obstet Gynecol Scand 76:590–595

    Article  CAS  PubMed  Google Scholar 

  33. Ikemura K, Oshima K, Enokiya T, Okamoto A, Oda H, Mizuno T, Ishinaga H, Muraki Y, Iwamoto T, Takeuchi K, Katayama N, Okuda M (2017) Co-administration of proton pump inhibitors ameliorates nephrotoxicity in patients receiving chemotherapy with cisplatin and fluorouracil: a retrospective cohort study. Cancer Chemother Pharmacol 79:943–949. https://doi.org/10.1007/s00280-017-3296-7

    Article  CAS  PubMed  Google Scholar 

  34. Karademir LD, Dogruel F, Kocyigit I, Yazici C, Unal A, Sipahioglu MH, Oymak O, Tokgoz B (2016) The efficacy of theophylline in preventing cisplatin-related nephrotoxicity in patients with cancer. Ren Fail 38:806–814. https://doi.org/10.3109/0886022X.2016.1163154

    Article  CAS  PubMed  Google Scholar 

  35. Kidera Y, Kawakami H, Sakiyama T, Okamoto K, Tanaka K, Takeda M, Kaneda H, Nishina S, Tsurutani J, Fujiwara K, Nomura M, Yamazoe Y, Chiba Y, Nishida S, Tamura T, Nakagawa K (2014) Risk factors for cisplatin-induced nephrotoxicity and potential of magnesium supplementation for renal protection. PLoS One 9:e101902. https://doi.org/10.1371/journal.pone.0101902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Konishi H, Fujiwara H, Itoh H et al (2017) Influence of magnesium and parathyroid hormone on cisplatin-induced nephrotoxicity in esophageal squamous cell carcinoma. Oncol Lett. https://doi.org/10.3892/ol.2017.7345

  37. Mahmoodnia L, Mohammadi K, Masumi R (2017) Ameliorative effect of lycopene effect on cisplatin-induced nephropathy in patient. J Nephropathol 6:144–149. https://doi.org/10.15171/jnp.2017.25

    Article  PubMed  PubMed Central  Google Scholar 

  38. Matsui M, Saito Y, Yamaoka S, et al (2018) Kidney-protective effect of magnesium supplementation in cisplatin-containing chemotherapy for pediatric cancer: a retrospective study. J Pediatr Hematol Oncol 1. https://doi.org/10.1097/MPH.0000000000001159

    Article  CAS  PubMed  Google Scholar 

  39. McKibbin T, Cheng LL, Kim S, Steuer CE, Owonikoko TK, Khuri FR, Shin DM, Saba NF (2016) Mannitol to prevent cisplatin-induced nephrotoxicity in patients with squamous cell cancer of the head and neck (SCCHN) receiving concurrent therapy. Support Care Cancer Off J Multinatl Assoc Support Care Cancer 24:1789–1793. https://doi.org/10.1007/s00520-015-2978-0

    Article  Google Scholar 

  40. Momeni A, Hajigholami A, Geshnizjani S, Kheiri S (2015) Effect of silymarin in the prevention of cisplatin nephrotoxicity, a clinical trial study. J Clin Diagn Res JCDR 9:OC11–OC13. https://doi.org/10.7860/JCDR/2015/12776.5789

    Article  CAS  PubMed  Google Scholar 

  41. Mousavi SSB, Zadeh MH, Shahbazian H et al (2014) The protective effect of theophyline in cisplatin nephrotoxicity. Saudi J Kidney Dis Transplant Off Publ Saudi Cent Organ Transplant Saudi Arab 25:333–337

    Article  Google Scholar 

  42. Osama H, Abdullah A, Gamal B, Emad D, Sayed D, Hussein E, Mahfouz E, Tharwat J, Sayed S, Medhat S, Bahaa T, Abdelrahim MEA (2017) Effect of honey and royal jelly against cisplatin-induced nephrotoxicity in patients with cancer. J Am Coll Nutr 36:342–346. https://doi.org/10.1080/07315724.2017.1292157

    Article  CAS  PubMed  Google Scholar 

  43. Saito Y, Kobayashi M, Yamada T, Kasashi K, Honma R, Takeuchi S, Shimizu Y, Kinoshita I, Dosaka-Akita H, Iseki K (2017) Premedication with intravenous magnesium has a protective effect against cisplatin-induced nephrotoxicity. Support Care Cancer Off J Multinatl Assoc Support Care Cancer 25:481–487. https://doi.org/10.1007/s00520-016-3426-5

    Article  Google Scholar 

  44. Santoso JT, Lucci JA, Coleman RL et al (2003) Saline, mannitol, and furosemide hydration in acute cisplatin nephrotoxicity: a randomized trial. Cancer Chemother Pharmacol 52:13–18. https://doi.org/10.1007/s00280-003-0620-1

    Article  CAS  PubMed  Google Scholar 

  45. Shahbazi F, Sadighi S, Dashti-Khavidaki S, Shahi F, Mirzania M, Abdollahi A, Ghahremani MH (2015) Effect of silymarin administration on cisplatin nephrotoxicity: report from a pilot, randomized, double-blinded, placebo-controlled clinical trial. Phytother Res PTR 29:1046–1053. https://doi.org/10.1002/ptr.5345

    Article  CAS  PubMed  Google Scholar 

  46. Uozumi J, Koikawa Y, Yasumasu T et al (1996) The protective effect of methylprednisolone against cisplatin-induced nephrotoxicity in patients with urothelial tumors. Int J Urol Off J Jpn Urol Assoc 3:343–347

    CAS  Google Scholar 

  47. Weijl NI, Elsendoorn TJ, Lentjes EGWM et al (1990) (2004) Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebo-controlled study. Eur J Cancer Oxf Engl 40:1713–1723. https://doi.org/10.1016/j.ejca.2004.02.029

    Article  CAS  Google Scholar 

  48. Yanagimoto Y, Takiguchi S, Miyazaki Y, Makino T, Takahashi T, Kurokawa Y, Yamasaki M, Miyata H, Nakajima K, Hosoda H, Kangawa K, Mori M, Doki Y (2016) Improvement of cisplatin-related renal dysfunction by synthetic ghrelin: a prospective randomised phase II trial. Br J Cancer 114:1318–1325. https://doi.org/10.1038/bjc.2016.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yoshida T, Niho S, Toda M, Goto K, Yoh K, Umemura S, Matsumoto S, Ohmatsu H, Ohe Y (2014) Protective effect of magnesium preloading on cisplatin-induced nephrotoxicity: a retrospective study. Jpn J Clin Oncol 44:346–354. https://doi.org/10.1093/jjco/hyu004

    Article  PubMed  Google Scholar 

  50. Zarif Yeganeh M, Vakili M, Shahriari-Ahmadi A, Nojomi M (2016) Effect of oral magnesium oxide supplementation on cisplatin-induced hypomagnesemia in cancer patients: a randomized controlled trial. Iran J Public Health 45:54–62

    PubMed  PubMed Central  Google Scholar 

  51. Martin KJ, González EA, Slatopolsky E (2009) Clinical consequences and management of hypomagnesemia. J Am Soc Nephrol 20:2291–2295. https://doi.org/10.1681/ASN.2007111194

    Article  CAS  PubMed  Google Scholar 

  52. Lajer H, Kristensen M, Hansen HH, Nielsen S, Frøkiaer J, Ostergaard LF, Christensen S, Daugaard G, Jonassen TE (2005) Magnesium depletion enhances cisplatin-induced nephrotoxicity. Cancer Chemother Pharmacol 56:535–542. https://doi.org/10.1007/s00280-005-1010-7

    Article  CAS  PubMed  Google Scholar 

  53. Chintala V, Prabhu VM, Boyanagari M, Bhat AN (2018) Role of hypomagnesaemia in acute kidney injury. J Clin Diagn Res. https://doi.org/10.7860/JCDR/2018/28073.11329

  54. Bussière FI, Gueux E, Rock E, Girardeau JP, Tridon A, Mazur A, Rayssiguier Y (2002) Increased phagocytosis and production of reactive oxygen species by neutrophils during magnesium deficiency in rats and inhibition by high magnesium concentration. Br J Nutr 87:107–113. https://doi.org/10.1079/BJN2001498

    Article  CAS  PubMed  Google Scholar 

  55. Rao M, Rao MN (1998) Protective effects of cystone, a polyherbal ayurvedic preparation, on cisplatin-induced renal toxicity in rats. J Ethnopharmacol 62:1–6

    Article  CAS  PubMed  Google Scholar 

  56. Rao M, Praveen Rao PN, Kamath R, Rao MN (1999) Reduction of cisplatin-induced nephrotoxicity by cystone, a polyherbal ayurvedic preparation, in C57BL/6J mice bearing B16F1 melanoma without reducing its antitumor activity. J Ethnopharmacol 68:77–81

    Article  CAS  PubMed  Google Scholar 

  57. Mach CM, Kha C, Nguyen D, Shumway J, Meaders KM, Ludwig M, Williams-Brown MY, Anderson ML (2017) A retrospective evaluation of furosemide and mannitol for prevention of cisplatin-induced nephrotoxicity. J Clin Pharm Ther 42:286–291. https://doi.org/10.1111/jcpt.12509

    Article  CAS  PubMed  Google Scholar 

  58. Katsuda H, Yamashita M, Katsura H et al (2010) Protecting cisplatin-induced nephrotoxicity with cimetidine does not affect antitumor activity. Biol Pharm Bull 33:1867–1871

    Article  CAS  PubMed  Google Scholar 

  59. Sleijfer DT, Offerman JJ, Mulder NH, Verweij M, van der Hem G, Schraffordt Koops HS, Meijer S (1987) The protective potential of the combination of verapamil and cimetidine on cisplatin-induced nephrotoxicity in man. Cancer 60:2823–2828

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

M. Teresa Hernández-Sánchez is a recipient of a predoctoral fellowship from the Junta de Castilla y León (Spain) and the European Social Fund from the European Commission. Research from the authors’ laboratory supporting part of the information incorporated into this article has been funded by grants from Instituto de Salud Carlos III (PI17/01979, DT15S/00166, and PI15/01055, PI14/01776), co-funded by FEDER, and Retic (RD016/0009/0025) REDINREN-FEDER funds, Junta de Castilla y León, Consejería de Sanidad (BIO/SA66/15, BIO/SA20/14); and Consejería de Educación, (SA359U14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Vicente-Vicente.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casanova, A.G., Hernández-Sánchez, M.T., López-Hernández, F.J. et al. Systematic review and meta-analysis of the efficacy of clinically tested protectants of cisplatin nephrotoxicity. Eur J Clin Pharmacol 76, 23–33 (2020). https://doi.org/10.1007/s00228-019-02771-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-019-02771-5

Keywords

Navigation