Skip to main content
Log in

Identification and distribution of mercury species in rat tissues following administration of thimerosal or methylmercury

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Methylmercury (Met-Hg) is one the most toxic forms of Hg, with a considerable range of harmful effects on humans. Sodium ethyl mercury thiosalicylate, thimerosal (TM) is an ethylmercury (Et-Hg)-containing preservative that has been used in manufacturing vaccines in many countries. Whereas the behavior of Met-Hg in humans is relatively well known, that of ethylmercury (Et-Hg) is poorly understood. The present study describes the distribution of mercury as (-methyl, -ethyl and inorganic mercury) in rat tissues (brain, heart, kidney and liver) and blood following administration of TM or Met-Hg. Animals received one dose/day of Met-Hg or TM by gavage (0.5 mg Hg/kg). Blood samples were collected after 6, 12, 24, 48, 96 and 120 h of exposure. After 5 days, the animals were killed, and their tissues were collected. Total blood mercury (THg) levels were determined by ICP-MS, and methylmercury (Met-Hg), ethylmercury (Et-Hg) and inorganic mercury (Ino-Hg) levels were determined by speciation analysis with LC-ICP-MS. Mercury remains longer in the blood of rats treated with Met-Hg compared to that of TM-exposed rats. Moreover, after 48 h of the TM treatment, most of the Hg found in blood was inorganic. Of the total mercury found in the brain after TM exposure, 63% was in the form of Ino-Hg, with 13.5% as Et-Hg and 23.7% as Met-Hg. In general, mercury in tissues and blood following TM treatment was predominantly found as Ino-Hg, but a considerable amount of Et-Hg was also found in the liver and brain. Taken together, our data demonstrated that the toxicokinetics of TM is completely different from that of Met-Hg. Thus, Met-Hg is not an appropriate reference for assessing the risk from exposure to TM-derived Hg. It also adds new data for further studies in the evaluation of TM toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ball LK, Ball R, Pratt RD (2001) An assessment of thimerosal use in childhood vaccines. Pediatrics 107:1147–1154

    Article  CAS  PubMed  Google Scholar 

  • Baskin DS, Ngo H, Didenko A (2003) Thimerosal iduces DNA breaks, caspase-3 activation, membrane damage, and cell death in cultured human neurons and fibroblaste. Toxicol Sci 74:361–368

    Article  CAS  PubMed  Google Scholar 

  • Berman RF, Pessah IN, Mouton PR, Mav D, Harry J (2008) Low-level neonatal thimerosal exposure: further evaluation of altered neurotoxic potential in SJL mice. Toxicol Sci 101:294–309

    Article  CAS  PubMed  Google Scholar 

  • Burbacher T, Rodier PM, Weiss B (1990) Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol Teratol 12:191–202

    Article  CAS  PubMed  Google Scholar 

  • Burbacher T, Shen DD, Liberato N, Grant KS, Cernichiari E, Clarkson T (2005) Comapriosn of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal. Environ Health Perspect 113:1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Clarkson TW, Magos L, Myers GJ (2003) Human exposure to mercury: the three modern dilemmas. J Trace Elem Exp Med 16:321–343

    Article  CAS  Google Scholar 

  • Clarkson TW, Vyas JB, Ballatori N (2007) Mechanisms of mercury disposition in the body. Am J Ind Med 50:757–764

    Article  CAS  PubMed  Google Scholar 

  • Geier DA, Geier MR (2006) A meta-analysis epidemiological assessment of neurodevelopmental disorders following vaccines administered from 1994 through 2000 in the United States. Neuroendocrinol Lett 27:401–413

    PubMed  Google Scholar 

  • Grotto D, de Castro MM, Barcelos GRM, Garcia SC, Barbosa F (2009a) Low level and sub-chronic exposure to methylmercury induces hypertension in rats: nitric oxide depletion and oxidative damage as possible mechanisms. Arch Tox 83:653–662

    Article  CAS  Google Scholar 

  • Grotto D, Barcelos GRM, Valentini J, Antunes LMG, Angeli JPF, Garcia SC, Barbosa F (2009b) Low levels of methylmercury induce DNA damage in rats: protective effects of selenium. Arch Tox 83:249–254

    Article  CAS  Google Scholar 

  • Harry GJ, Harris MW, Burka LT (2004) Mercury concentrations in brain and kidney following ethylmercury, methylmercury and thimerosal administration to neonatal mice. Toxicol Lett 154:183–189

    Article  CAS  PubMed  Google Scholar 

  • Magos L (2003) Neurotoxic character of thimerosal and the allometric extrapolation of adult clearance half-time to infants. J Appl Toxicol 23:263–269

    Article  CAS  PubMed  Google Scholar 

  • Mori N, Yasutake A, Hirayama K (2007) Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Arch Tox 81:769–776

    Article  CAS  Google Scholar 

  • Palmer CD, Lewis M, Geraghty C, Barbosa F, Parsons P (2006) Determination of lead, cadmium and mercury in blood for assessing environmental and occupational exposures: a comparison between inductively coupled plasma-mass spectrometry and atomic absorption spectrometry. Spectrochim Acta B 61:980–990

    Article  Google Scholar 

  • Parran DK, Barker A, Ehrich M (2005) Effects of thimerosal on NGF sgnal transduction and cell death in neuroblastoma cells. Toxicol Sci 86:132–140

    Article  CAS  PubMed  Google Scholar 

  • Parsons P, Barbosa F (2007) Atomic spectrometry and trends in clinical laboratory medicine. Spectrochim Acta B 62:992–1003

    Article  Google Scholar 

  • Rodrigues JL, Souza SS, Souza VC, Barbosa F (2010) Methylmercury and inorganic mercury determination in blood by using LC-ICP-MS with a fast sample preparation procedure. Talanta 80:1158–1163

    Article  CAS  PubMed  Google Scholar 

  • Souza SS, Rodrigues JL, Souza VCO, Barbosa F (2010) A fast sample preparation procedure for mercury speciation in hair samples by high-performance liquid chromatography coupled to ICP-MS. J Anal Atom Spectrom 25:79–83

    Article  Google Scholar 

  • Tan M, Parkin JE (2000) Route of decomposition of thiomersal (thimerosal). Int J Pharm 208:23–34

    Article  CAS  PubMed  Google Scholar 

  • Trümpler S, Lohmann W, Meermann B, Buscher W, Sperling M, Karst U (2009) Interaction of thimerosal with proteins-ethylmercury adduct formation of human serum albumin and β-lactoglobulin A. Metallomics 1:87–91

    Article  Google Scholar 

  • U.S. EPA (U.S. Environmental Protection Agency) (2010) Integrated risk information system. Available: http://www.epa.gov/iris/subst/0073-htm [Accessed 25 January 2010]

  • Westphal GA, Asgari S, Schulz TG, Bünger J, Müller M, Hallier E (2003) Thimerosal induces micronuclei in the cytochalasin B block micronucleus test with human lymphocytes. Arch Tox 77:50–55

    Article  CAS  Google Scholar 

  • WHO (2002) WHO recommendations from the strategic advisory group of experts. Weekly Epidemiol Rec 77:305–316

    Google Scholar 

  • Yamamoto R, Shima M (2009) Estimation of human maximum tolerable intake for methylmercury based on two recent studies in monkeys. Arch Tox 83:1043–1048

    Article  CAS  Google Scholar 

  • Zareba G, Cernichiari E, Hojo R, McNitt S, Weiss B, Mumtaz MM, Jones DE, Clarkson TW (2007) Thimerosal distribution and metabolism in neonatal mice: comparison with methylmercury. J Appl Toxicol 27:511–518

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Barbosa Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, J.L., Serpeloni, J.M., Batista, B.L. et al. Identification and distribution of mercury species in rat tissues following administration of thimerosal or methylmercury. Arch Toxicol 84, 891–896 (2010). https://doi.org/10.1007/s00204-010-0538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0538-4

Keywords

Navigation