Skip to main content

Health Risk Linked to Mercury Toxicity in Food and Environment

  • Chapter
  • First Online:
Mercury Toxicity Mitigation: Sustainable Nexus Approach

Part of the book series: Earth and Environmental Sciences Library ((EESL))

  • 69 Accesses

Abstract

Mercury is a potent neurotoxin that poses significant risks to human health. The toxicity of mercury to humans depends on the specific form of mercury, the dosage, and the rate of exposure. Inhaled mercury vapor primarily affects the brain, while mercurous and mercuric salts primarily damage the gastrointestinal lining and kidneys. Methyl mercury, on the other hand, is distributed throughout the body. In this chapter, different sources of mercury contamination in the food and environment are described. Different pathways of mercury contamination in food and effect of mercury poisoning on health is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernhoft RA (2012) Mercury toxicity and treatment: a review of the literature. J Environ Public Health. Hindawi Limited. https://doi.org/10.1155/2012/460508

  2. Budnik LT, Casteleyn L (2019) Mercury pollution in modern times and its socio-medical consequences. Sci Total Environ 654:720–734. https://doi.org/10.1016/j.scitotenv.2018.10.408

    Article  CAS  Google Scholar 

  3. Copan L, Fowles J, Barreau T, McGee N (2015) Mercury toxicity and contamination of households from the use of skin creams adulterated with mercurous chloride (calomel). Int J Environ Res Public Health 12(9):10943–10954. https://doi.org/10.3390/ijerph120910943

    Article  CAS  Google Scholar 

  4. Das K, Debacker V, Pillet S, Bouquegneau J-M (2021) Heavy metals in marine mammals. In: Toxicology of marine mammals. CRC Press, pp. 147–179. https://doi.org/10.1201/9780203165577-11

  5. Dasgupta A, Wahed A (2014) Common poisonings including heavy metal poisoning. In: Clinical chemistry, immunology and laboratory quality control. Elsevier, pp 337–351. https://doi.org/10.1016/b978-0-12-407821-5.00019-x

  6. de Almeida Rodrigues P, Ferrari RG, dos Santos LN, Conte Junior CA (2019) Mercury in aquatic fauna contamination: A systematic review on its dynamics and potential health risks. J Environ Sci (China) 84:205–218. Chinese Academy of Sciences. https://doi.org/10.1016/j.jes.2019.02.018

  7. Domingo JL, Marquès M, Mari M, Schuhmacher M (2020) Adverse health effects for populations living near waste incinerators with special attention to hazardous waste incinerators. A review of the scientific literature. Environ Res 187. https://doi.org/10.1016/j.envres.2020.109631

  8. Dutta S, Gorain B, Choudhury H, Roychoudhury S, Sengupta P (2022) Environmental and occupational exposure of metals and female reproductive health. Environ Sci Pollut Res 29(41):62067–62092. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s11356-021-16581-9

  9. Esteban-López M, Arrebola JP, Juliá M, Pärt P, Soto E, Cañas A, Pedraza-Díaz S, González-Rubio J, Castaño A (2022) Selecting the best non-invasive matrix to measure mercury exposure in human biomonitoring surveys. Environ Res 204. https://doi.org/10.1016/j.envres.2021.112394

  10. Garí M, Grzesiak M, Krekora M, Kaczmarek P, Jankowska A, Król A, Kaleta D, Jerzyńska J, Janasik B, Kuraś R, Tartaglione AM, Calamandrei G, Hanke W, Polańska K (2022) Prenatal exposure to neurotoxic metals and micronutrients and neurodevelopmental outcomes in early school age children from Poland. Environ Res 204. https://doi.org/10.1016/j.envres.2021.112049

  11. Ghotra A, Lehnherr I, Porter TJ, Pisaric MFJ (2020) Tree-Ring inferred atmospheric mercury concentrations in the mackenzie delta (NWT, Canada) Peaked in the 1970s but are increasing once more. ACS Earth Space Chem 4(3):457–466. https://doi.org/10.1021/acsearthspacechem.0c00003

    Article  CAS  Google Scholar 

  12. González-Merizalde MV, Menezes-Filho JA, Cruz-Erazo CT, Bermeo-Flores SA, Sánchez-Castillo MO, Hernández-Bonilla D, Mora A (2016) Manganese and mercury levels in water, sediments, and children living near gold-mining areas of the Nangaritza River Basin, Ecuadorian Amazon. Arch Environ Contam Toxicol 71(2):171–182. https://doi.org/10.1007/s00244-016-0285-5

    Article  CAS  Google Scholar 

  13. Gupta SK, Pratap A (2007) History, origin, and evolution. In: Advances in botanical research, vol 45. Academic, pp 1–20. https://doi.org/10.1016/S0065-2296(07)45001-7

  14. Heck DE, Joseph LB, Murthy P, Ansehl A, Jan YH, Wahler GC, Kim HD (2020) Technology versus mercury: the metal that scars civilization. In: Technology and global public health, pp 205–218. https://doi.org/10.1007/978-3-030-46355-7_18

  15. Jen YH, Yuan CS, Lin YC, Lee CG, Hung CH, Tsai CM, Tsai HH, Ie IR (2011) Partition and tempospatial variation of gaseous and particulate mercury at a unique mercury-contaminated remediation site. J Air Waste Manag Assoc 61(11):1115–1123. https://doi.org/10.1080/10473289.2011.617617

    Article  CAS  Google Scholar 

  16. Kismelyeva S, Khalikhan R, Torezhan A, Kumisbek A, Akimzhanova Z, Karaca F, Guney M (2021) Potential human exposure to mercury (Hg) in a chlor-alkali plant impacted zone: Risk characterization using updated site assessment data. Sustainability (Switzerland) 13(24). https://doi.org/10.3390/su132413816

  17. Liang Y, Liang H, Zhu S (2014) Mercury emission from coal seam fire at Wuda, Inner Mongolia, China. Atmos Environ 83:176–184. https://doi.org/10.1016/j.atmosenv.2013.09.001

    Article  CAS  Google Scholar 

  18. Lyons K, Lowe CG (2013) Mechanisms of maternal transfer of organochlorine contaminants and mercury in the common thresher shark (Alopias vulpinus). Can J Fish Aquat Sci 70(12):1667–1672. https://doi.org/10.1139/cjfas-2013-0222

    Article  CAS  Google Scholar 

  19. Martinez AI, Deshpande BK (2007) Kinetic modeling of H2O2-enhanced oxidation of flue gas elemental mercury. Fuel Process Technol 88(10):982–987. https://doi.org/10.1016/j.fuproc.2007.05.009

    Article  CAS  Google Scholar 

  20. Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, Idris AM, Khandaker MU, Osman H, Alhumaydhi FA, Simal-Gandara J (2022) Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J King Saud Univ-Sci 34(3). https://doi.org/10.1016/j.jksus.2022.101865

  21. Neghab M, Choobineh A, Zadeh JH, Ghaderi E (2011) Symptoms of intoxication in dentists associated with exposure to low levels of mercury. Ind Health 49(2):249–254. https://doi.org/10.2486/indhealth.MS1214

    Article  CAS  Google Scholar 

  22. Packull-McCormick S, Ratelle M, Lam C, Napenas J, Bouchard M, Swanson H, Laird BD (2022) Hair to blood mercury concentration ratios and a retrospective hair segmental mercury analysis in the Northwest Territories, Canada. Environ Res 203. https://doi.org/10.1016/j.envres.2021.111800

  23. Priyadarshanee M, Mahto U, Das S (2022) Mechanism of toxicity and adverse health effects of environmental pollutants. In: Microbial biodegradation and bioremediation: techniques and case studies for environmental pollution, pp 33–53. https://doi.org/10.1016/B978-0-323-85455-9.00024-2

  24. Yasutake A, Hachiya N (2006) Accumulation of inorganic mercury in hair of rats exposed to methylmercury or mercuric chloride. Tohoku J Exp Med 210(4):301–306. https://doi.org/10.1620/tjem.210.301

    Article  CAS  Google Scholar 

  25. Yokoyama H (2018) Mercury pollution in minamata. SpringerBriefs Environ Sci 341(6153)

    Google Scholar 

  26. Yoshimasu K (2013) 763–Childhood autism, adhd, and mercury exposures: a meta-analysis. Eur Psychiatry 28:1. https://doi.org/10.1016/S0924-9338(13)75968-6

    Article  Google Scholar 

  27. Zhang W, Li F, Gao L, Sun G, Cui Z, Chen F, Li P, Feng X, Shang L (2022) Understanding the excretion rates of methylmercury and inorganic mercury from human body via hair and fingernails. J Environ Sci (China) 119:59–67. https://doi.org/10.1016/j.jes.2022.01.041

    Article  CAS  Google Scholar 

  28. Zulaikhah ST, Wahyuwibowo J, Pratama AA (2020) Mercury and its effect on human health: A review of the literature. Int J Public Health Sci 9(2):103–114. https://doi.org/10.11591/ijphs.v9i2.20416

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathak, A., Anjaria, P., Bhavsar, P., Asediya, V. (2024). Health Risk Linked to Mercury Toxicity in Food and Environment. In: Kumar, N. (eds) Mercury Toxicity Mitigation: Sustainable Nexus Approach. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-48817-7_6

Download citation

Publish with us

Policies and ethics