Skip to main content

Advertisement

Log in

Comparative study of quercetin and its two glycoside derivatives quercitrin and rutin against methylmercury (MeHg)-induced ROS production in rat brain slices

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The hypothesis that methylmercury (MeHg) potently induces formation of reactive oxygen species (ROS) in the brain is supported by observations on the neuroprotective effects of various classes of antioxidants. Flavonoids have been reported to possess divalent metal chelating properties, antioxidant activities and to readily permeate the blood–brain barrier. They can also provide neuroprotection in a wide array of cellular and animal models of neurological diseases. Paradoxically, in vivo administration of quercetin displays unexpected synergistic neurotoxic effect with MeHg. Considering this controversy and the limited data on the interaction of MeHg with other flavonoids, the potential protective effect of quercetin and two of its glycoside analogs (i.e., rutin and quercitrin) against MeHg toxicity were evaluated in rat cortical brain slices. MeHg (100 μM) caused lipid peroxidation and ROS generation. Quercitrin (10 μg/mL) and quercetin (10 μg/mL) protected mitochondria from MeHg (5 μM)-induced changes. In contrast, rutin did not afford a significant protective effect against MeHg (100 μM)-induced lipid peroxidation and ROS production in cortical brain slices. MeHg-generated ROS in cortical slices was dependent upon an increase in intracellular Ca2+ levels, because the over-production of MeHg-induced H2O2 in mitochondria occurred with a concomitant increase in Ca2+ transient. Here, we have extended the characterization of mechanisms associated with the neuroprotective effects of quercetin against MeHg-induced toxicity in isolated mitochondria, by performing an array of parallel studies in brain slices. We provide novel data establishing that (1) Ca2+ plays a central role in MeHg toxicity and (2) in brain slices MeHg induces mitochondrial oxidative stress both via direct interaction with mitochondria (as previously reported in in vitro studies) as well as via mitochondria-independent (or indirect) mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen JW, Mutkus LA, Aschner M (2001) Methylmercury-mediated inhibition of 3H-D-aspartate transport in cultured astrocytes is reversed by the antioxidant catalase. Brain Res 902:92–100

    Article  CAS  PubMed  Google Scholar 

  • Allen JW, Shanker G, Tan KH, Aschner M (2002) The consequences of methylmercury exposure on interactive functions between astrocytes and neurons. Neurotoxicology 23:755–759

    Article  CAS  PubMed  Google Scholar 

  • Araragi S, Kondoh M, Kawas M, Saito S, Higashimoto M, Sato M (2003) Mercuric chloride induces apoptosis via a mitochondrial-dependent pathway in human leukemia cells. Toxicology 184:1–9

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Yao CP, Allen JW, Tan KH (2000) Methylmercury alters glutamate transport in astrocyte. Neurochem Int 37:199–206

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Syversen T, Souza DO, Rocha JBT, Farina M (2007) Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res 40:285–291

    Article  CAS  PubMed  Google Scholar 

  • Brustovetsky N, Dubinsky JM (2000) Dual responses of CNS mitochondria to elevated calcium. J Neurosci 20:103–113

    CAS  PubMed  Google Scholar 

  • Cai Q, Rahn RO, Zhang R (1997) Dietary flavonoids, quercetin, luteolin and genistein reduce oxidative DNA damage and lipid peroxidation and quench free radicals. Cancer Lett 119:99–107

    Article  CAS  PubMed  Google Scholar 

  • Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276

    Article  CAS  PubMed  Google Scholar 

  • Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury-current exposures and clinical manifestations. New Engl J Med 349:1731–1737

    Article  CAS  PubMed  Google Scholar 

  • Cotelle N (2001) Role of flavonoids in oxidative stress. Curr Top Med Chem 1:569–590

    Article  CAS  PubMed  Google Scholar 

  • Dajas F, Rivera-Megre F, Blasina F, Arredondo F, Abin-Carriquiry JA, Costa G, Echeverry C, Lafon L, Heizen H, Ferreira M, Morquio A (2003) Neuroprotection by flavonoids. Braz J Med Biol Res 36:1613–1620

    Article  CAS  PubMed  Google Scholar 

  • Denny MF, Hare MF, Atchison WD (1993) Methylmercury alters intrasynaptosomal concentrations of endogenous polyvalent cations. Toxicol Appl Pharmacol 122:222–232

    Article  CAS  PubMed  Google Scholar 

  • Dreiem A, Seegal RF (2007) Methylmercury-induced changes in mitochondrial function in striatal synaptosomes are calcium-dependent and ROS-independent. Neurotoxicology 28:720–726

    Article  CAS  PubMed  Google Scholar 

  • Dubinsky JM, Levi Y (1998) Calcium-induced activation of the mitochondrial permeability transition in hippocampal neurons. J Neurosci Res 53:728–741

    Article  CAS  PubMed  Google Scholar 

  • Farina M, Franco JL, Ribas CM, Meotti FC, Missau FC, Pizzolatti MG, Dafre AL, Santos AR (2005) Protective effects of Polygala paniculata extract against methylmercury-induced neurotoxicity in mice. J Pharm Pharmacol 57:1503–1508

    Article  CAS  PubMed  Google Scholar 

  • Fiskum G, Rosenthal RE, Vereczky V (2004) Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress. J Bioenerg Biomembr 36:347–352

    Article  CAS  PubMed  Google Scholar 

  • Fonfria E, Vilaro MT, Babot Z, Rodriguez-Farre E, Sunol C (2005) Mercury compounds disrupt neuronal glutamate transport in cultured mouse cerebellar granule cells. J Neurosci Res 79:545–553

    Article  CAS  PubMed  Google Scholar 

  • Franco JL, Braga HC, Stringari J, Missau FC, Posser T, Mendes BG, Leal RB, Santos AR, Dafre AL, Pizzolatti MG, Farina M (2007) Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: protective effects of quercetin. Chem Res Toxicol 20:1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Grotto D, de Castro MM, Barcelos GRM, Garcia SC, Barbosa F (2009) Low level and sub-chronic exposure to methylmercury induces hypertension in rats: nitric oxide depletion and oxidative damage as possible mechanisms. Arch Toxicol 83:653–662

    Article  CAS  PubMed  Google Scholar 

  • Gugliucci A, Stahl AJ (1995) Low density lipoprotein oxidation is inhibited by extracts of Ilex paraguariensis. Biochem Mol Biol Int 35:47–56

    CAS  PubMed  Google Scholar 

  • Gupta R, Singh M, Sharma A (2003) Neuroprotective effect of antioxidants on ischaemia and reperfusion-induced cerebral injury. Pharmacol Res 48:209–215

    Article  CAS  PubMed  Google Scholar 

  • Hansson MJ, Månsson R, Morota S, Uchino H, Kallur T, Sumi T, Ishii N, Shimazu M, Keep MF, Jegorov A, Elmér E (2008) Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radic Biol Med 45:284–294

    Article  CAS  PubMed  Google Scholar 

  • Hollman PC, Katan MB (1999) Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 37:937–942

    Article  CAS  PubMed  Google Scholar 

  • InSug O, Datar S, Koch CJ, Shapiro IM, Shenker BJ (1997) Mercuric compounds inhibit human monocyte function by inducing apoptosis: evidence for formation of reactive oxygen species, development of mitochondrial membrane permeability transition and loss of reductive reserve. Toxicology 124:211–224

    Article  CAS  PubMed  Google Scholar 

  • Kaariaien TM, Piltonen M, Ossola B (2008) Lack of robust protective effect of quercetin in two types of 6-hydroxydopamine-induced parkinsonian models in rats and dopaminergic cell cultures. Brain Res 1203:149–159

    Article  Google Scholar 

  • Komulainen H, Bondy SC (1987) Increased free intrasynaptosomal Ca2+ by neurotoxic organometals: distinctive mechanisms. Toxicol Appl Pharmacol 88:77–86

    Article  CAS  PubMed  Google Scholar 

  • Lifshitz J, Sullivan PG, Hovda DA (2004) Mitochondrial damage and dysfunction in traumatic brain injury. Mitochondrion 4:705–713

    Article  CAS  PubMed  Google Scholar 

  • Limke TL, Heidemann SR, Atchison WD (2004) Disruption of intraneuronal divalent cation regulation by methylmercury: are specific targets involved in altered neuronal development and cytotoxicity in methylmercury poisoning? Neurotoxicology 25:741–760

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mande S, Amit T, Reznichenk L, Weinre O, Youdim MB (2006) Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol Nutr Food Res 50:229–234

    Article  Google Scholar 

  • Martins RP, Braga HC, Silva AP, Dalmarco JB, de Bem AF, dos Santos AR, Dafre AL, Pizzolatti MG, Latini A, Aschner M, Farina M (2009) Synergistic neurotoxicity induced by methylmercury and quercetin in mice. Food Chem Toxicol 47:645–649

    Article  Google Scholar 

  • Marty MS, Atchison WD (1997) Pathways mediating Ca2+ entry in rat cerebellar granule cells following in vitro exposure to methyl mercury. Toxicol Appl Pharmacol 147:319–330

    Article  CAS  PubMed  Google Scholar 

  • Meotti FC, Fachinetto R, Maffi LC, Missau FC, Pizzolatti MG, Rocha JB, Santos AR (2007) Antinociceptive action of myricitrin: involvement of the K+ and Ca2+ channels. Eur J Pharmacol 567:198–205

    Article  CAS  PubMed  Google Scholar 

  • Morel AF, Dias GO, Porto C, Simionatto C, Stuker CZ, Dalcol II (2006) Antimicrobial activity of extractives of Solidago microglossa. Fitoterapia 77:453–455

    Article  CAS  PubMed  Google Scholar 

  • Mori N, Yasutake A, Hirayama K (2007) Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Arch Toxicol 81:769–776

    Article  CAS  PubMed  Google Scholar 

  • Pereira RP, Fachinetto R, de Souza Prestes A, Puntel RL, Santos da Silva GN, Heinzmann BM, Boschetti TK, Athayde ML, Bürger ME, Morel AF, Morsch VM, Rocha JB (2009) Antioxidant effects of different extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citratus. Neurochem Res 34:973–983

    Article  CAS  PubMed  Google Scholar 

  • Reichl FX, Esters M, Simon S, Seiss M, Kehe K, Kleinsasser N, Folwaczny M, Glas J, Hickel R (2006a) Cell death effects of resin-based dental material compounds and mercurials in human gingival fibroblasts. Arch Toxicol 80:370–377

    Article  CAS  PubMed  Google Scholar 

  • Reichl FX, Simon S, Esters M, Seiss M, Kehe K, Kleinsasser N, Hickel R (2006b) Cytotoxicity of dental composite (co)monomers and the amalgam component Hg(2+) in human gingival fibroblasts. Arch Toxicol 80:465–472

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  PubMed  Google Scholar 

  • Roos DH, Puntel RL, Santos MM, Souza DO, Farina M, Nogueira CW, Aschner M, Burger ME, Barbosa NB, Rocha JB (2009) Guanosine and synthetic organoselenium compounds modulate methylmercury-induced oxidative stress in rat brain cortical slices: Involvement of oxidative stress and glutamatergic system. Toxicol In Vitro 23:302–307

    Article  CAS  PubMed  Google Scholar 

  • Saija A, Scalese M, Lanza M, Marzullo D, Bonina F, Castelli F (1995) Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Radic Biol Med 19:481–486

    Article  CAS  PubMed  Google Scholar 

  • Santamaría A, Santamaría D, Díaz-Muñoz M, Espinoza-González V, Ríos C (1997) Effects of N omega-nitro-l-arginine and l-arginine on quinolinic acid-induced lipid peroxidation. Toxicol Lett 93:117–124

    Article  PubMed  Google Scholar 

  • Schmid K, Sassen A, Staudenmaier R, Kroemer S, Reichl FX, Harréus U, Hagen R, Kleinsasser N (2007) Mercuric dichloride induces DNA damage in human salivary gland tissue cells and lymphocytes. Arch Toxicol 81:759–767

    Article  CAS  PubMed  Google Scholar 

  • Shanker G, Aschner M (2003) Methylmercury-induced reactive oxygen species formation in neonatal cerebral astrocytic cultures is attenuated by antioxidants. Mol Brain Res 110:85–91

    Article  CAS  PubMed  Google Scholar 

  • Shenker BJ, Guo TL, Shapiro IM (1999) Induction of apoptosis in human T-cells by methyl mercury: temporal relationship between mitochondrial dysfunction and loss of reductive reserve. Toxicol Appl Pharmacol 157:23–35

    Article  CAS  PubMed  Google Scholar 

  • Sirois JE, Atchison WD (2000) Methylmercury affects multiple subtypes of calcium channels in rat cerebellar granule cells. Toxicol Appl Pharmacol 167:1–11

    Article  CAS  PubMed  Google Scholar 

  • Spanos GA, Wrolstad RE (1992) Phenolic of apple, pear, and white grape juices and their changes with processing and storage—a rewiew. J Agric Food Chem 40:1478–1487

    Article  CAS  Google Scholar 

  • Sudati JH, Fachinetto R, Pereira RP, Boligon AA, Athayde ML, Soares FA, Barbosa NV, Rocha JB (2009) In vitro antioxidant activity of Valeriana officinalis against different neurotoxic agents. Neurochem Res 34:1372–1379

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Verity MA, Brown WJ, Cheung M (1975) Organic mercurial encephalopathy: in vivo and in vitro effects of methyl mercury on synaptosomal respiration. J Neurochem 25:759–766

    Article  CAS  PubMed  Google Scholar 

  • Wagner C, Fachinetto R, Dalla Corte CL, Brito VB, Severo D, Costa Dias G, Morel AF, Nogueira CW, Rocha JB (2006) Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res 1107:192–198

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  CAS  PubMed  Google Scholar 

  • Yee S, Choi BH (1994) Methylmercury poisoning induces oxidative stress in the mouse brain. Exp Mol Pathol 60:188–196

    Article  CAS  PubMed  Google Scholar 

  • Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ (2004) Flavonoid permeability across an in situ model of the blood–brain barrier. Free Radic Biol Med 36:592–604

    Article  CAS  PubMed  Google Scholar 

  • Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:1119–1125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The support by CAPES, CNPq, and FAPERGS is gratefully acknowledged. MA was supported by grants from NIEHS ES07331 and 10563.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João B. Rocha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, C., Vargas, A.P., Roos, D.H. et al. Comparative study of quercetin and its two glycoside derivatives quercitrin and rutin against methylmercury (MeHg)-induced ROS production in rat brain slices. Arch Toxicol 84, 89–97 (2010). https://doi.org/10.1007/s00204-009-0482-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-009-0482-3

Keywords

Navigation