Skip to main content

Advertisement

Log in

Cell death effects of resin-based dental material compounds and mercurials in human gingival fibroblasts

  • Organ Toxicita and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In order to test the hypothesis that released dental restorative materials can reach toxic levels in human oral tissues, the cytotoxicities of the resin-based dental (co)monomers hydroxyethylmethacrylate (HEMA), triethyleneglycoldimethacrylate (TEGDMA), urethanedimethacrylate (UDMA), and bisglycidylmethacrylate (BisGMA) compared with methyl mercury chloride (MeHgCl) and the amalgam component mercuric chloride (HgCl2) were investigated on human gingival fibroblasts (HGF) using two different test systems: (1) the modified XTT-test and (2) the modified H 33342 staining assay. The HGF were exposed to various concentrations of the test-substances in all test systems for 24 h. All tested (co)monomers and mercury compounds significantly (P<0.05) decreased the formazan formation in the XTT-test. EC50 values in the XTT assay were obtained as half-maximum-effect concentrations from fitted curves. Following EC50 values were found (mean [mmol/l]; s.e.m. in parentheses; n=12; * significantly different to HEMA): HEMA 11.530 (0.600); TEGDMA* 3.460 (0.200); UDMA* 0.106 (0.005); BisGMA* 0.087 (0.001); HgCl2* 0.013 (0.001); MeHgCl* 0.005 (0.001). Following relative toxicities were found: HEMA 1; TEGDMA 3; UDMA 109; BisGMA 133; HgCl2 887; MeHgCl 2306. A significant (P<0.05) increase of the toxicity of (co)monomers and mercurials was found in the XTT-test in the following order: HEMA < TEGDMA < UDMA < BisGMA < HgCl2 < MeHgCl. TEGDMA and MeHgCl induced mainly apoptotic cell death. HEMA, UDMA, BisGMA, and HgCl2 induced mainly necrotic cell death. The results of this study indicate that resin composite components have a lower toxicity than mercury from amalgam in HGF. HEMA, BisGMA, UDMA, and HgCl2 induced mainly necrosis, but it is rather unlikely that eluted substances (solely) can reach concentrations, which might induce necrotic cell death in the human physiological situation, indicating that other (additional) factors may be involved in the induction of tissue (pulp) inflammation effects after dental restauration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abend M, Kehe K, Riedel M, Van Beuningen D (2000) Correlation of micronucleus and apoptosis assays with reproductive cell death can be improved by considering other modes of death. Int J Radiat Biol 76:249–259

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death signaling and modulation. Science 281:1305–1308

    Article  PubMed  CAS  Google Scholar 

  • Bean TA, Zhuang WC, Tong PY, Eick JD, Chappelow CC, Yourtee DM (1995) Comparison of tetrazolium colorimetric and 51Cr release assay for cytotoxicxity determination of dental biomaterials. Dent Mater 11:327–331

    Article  PubMed  CAS  Google Scholar 

  • Belletti S, Orlandini G, Vettori MV, Mutti A, Uggeri J, Scandroglio R, Alinovi R, Gatti R (2002) Time course assessement of methylmercury effects on C6 glioma cells: Submicromolar concentrations induce oxidative DNA damage and apoptosis. J Neurosci Res 70:703–711

    Article  PubMed  CAS  Google Scholar 

  • Boot JH (1996) Hepatotoxic effects of SH-reagents in human and rat hepatocyte cultures and in situ perfused rat livers. Cell Struct Funct 21:221–229

    Article  PubMed  CAS  Google Scholar 

  • Bouillaguet S, Virgillito M, Wataha J, Ciucchi B, Holz J (1998) The influence of dentine permeability on cytotoxicity of four dentine bonding systems, in vitro. J Oral Rehabil 25:45–51

    Article  PubMed  CAS  Google Scholar 

  • Denny MF, Atchison WD (1996) Mercurial-induced alterations in neuronal divalent cation homeostasis. Neurotoxicology 17:47–61

    PubMed  CAS  Google Scholar 

  • Engelmann J, Leyhausen G, Leibfritz D, Geurtsen W (2001) Metabolic effects of dental resin components in vitro detected by NMR spectroscopy. J Dent Res 80:869–875

    PubMed  CAS  Google Scholar 

  • Engelmann J, Leyhausen G, Leibfritz D, Geurtsen W (2002) Effect of TEGDMA on the intracellular Glutathione Concentration of Human Gingival Fibroblasts. J Biomed Mat Res 63:746–751

    Article  CAS  Google Scholar 

  • Ferracane JL, Condon JR (1990) Rate of elution of leachable components from composite. Dent Mater 6:282–287

    Article  PubMed  CAS  Google Scholar 

  • Ferracane JL (1994) Elution of leachable components from composites. J Oral Rehabil 21:441–442

    Article  PubMed  CAS  Google Scholar 

  • Forst HAT (1985) Probleme des multiplen Testens und Schätzens in der Arzneimittelforschung. Arzneim Forsch/Drug Res 35:3

    Google Scholar 

  • Freidig A, Hofhuis M, van Holstijn I, Hermens J (2001) Glutathione depletion in rat hepatocytes: a mixture toxicity study with alpha,beta-unsaturated esters. Xenobiotica 31:295–307

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa S, Kadoma Y, Masuhara E (1984) A colorimetric study of the interaction of synthetic phospholipids liposomes with vinyl monomers, acrylates and methacrylates. J Biomed Mater Res 18:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Gerzina T, Hume WR (1994) Effect of dentin on release of tegdma from resin composite in vitro. J Oral Rehabil 21:463–468

    Article  PubMed  CAS  Google Scholar 

  • Gerzina T, Hume WR (1996) Diffusion of monomers from bonding resin resin composite combinations through dentine in vitro. J Dent 24:125–128

    Article  PubMed  CAS  Google Scholar 

  • Geurtsen W, Schoeler U (1997) A 4-year retrospective clinical study of Class I and Class II composite restorations. J Dent Res 25:229–232

    Article  CAS  Google Scholar 

  • Geurtsen W (1998) Substances released from dental resin composites and glass ionomer cements. Eur J Oral Sci 106:687–695

    Article  PubMed  CAS  Google Scholar 

  • Geurtsen W, Lehman F, Spahl W, Leyhausen G (1998) Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3- and three human primary fibroblast cultures. J Biomed Mat Res 41:474–480

    Article  CAS  Google Scholar 

  • Halbach S (1994) Amalgamfüllungen: Belastung oder Vergiftung mit Quecksilber?. Dtsch Ärzteblatt 91:502–506

    Google Scholar 

  • Hamid A, Okamoto A, Iwaku M, Hume WR (1998) Component release from light-activated glass ionomer and compomer cements. J Oral Rehabil 25:94–99

    Article  PubMed  CAS  Google Scholar 

  • Hanks CC, Wataha JC, Parsell RR, Strawn SE (1992) Delineation of cytotoxic concentrations of two dentin bonding agents in vitro. J Endod 18:589–596

    Article  PubMed  CAS  Google Scholar 

  • Heil J, Reifferscheild G, Waldmann P (1996) Genotoxicity of dental materials. Mutation Res 368:181–194

    Article  PubMed  CAS  Google Scholar 

  • Issa Y, Watts DC, Brunton PA, Waters CM, Duxbury AJ (2004) Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater 20:12–20

    Article  PubMed  CAS  Google Scholar 

  • Janke V, von Neuhoff N, Schlegelberger B, Leyhausen G, Geurtsen W (2003) Tegdma causes apoptosis in primary human gingival fibroblasts. J Dent Res 82:814–818

    PubMed  CAS  Google Scholar 

  • Kaga M (2001) The in vitro cytotoxicity of eluates from dentin bonding resins and their effect on tyrosine phosphorilation of L929 cells. Dent Mater 17:333–339

    Article  PubMed  CAS  Google Scholar 

  • Kehe K, Reichl FX, Durner J, Walther U, Hickel R, Forth W (2001) Cytotoxicity of dental composite components and mercury compounds in pulmonary cells. Biomaterials 22:317–322

    Article  PubMed  CAS  Google Scholar 

  • Landbeck P, Paulsen O (1995) Cytotoxic effects of four antibiotics on endothelial cells. Pharmacol Toxicol 77:365–370

    Google Scholar 

  • Lee SY, Huang HM, Lin CY, Shih YH (1998) Leached components from dental composites in oral simulating fluids and the resultant composite strengths. J Oral Rehabil 25:575–578

    Article  PubMed  CAS  Google Scholar 

  • Leite CM, Botelho AS, Oliveira JR, Cardoso SV, Loyola AM, Gomez RS, Vaz RR (2004) Immunolocalization of HLA-DR and metallothionein on amalgam tattoos. Braz Dent J 15:99–103

    Article  PubMed  Google Scholar 

  • Lipfert FW, Moskowitz PD, Fthenakis V, Saroff L (1996) Probabilistic assessment of health risks of methylmercury from burning coal. Neurotoxicology 17:197–211

    PubMed  CAS  Google Scholar 

  • Liu XS, Li P, Widlak P, Zou H, Luo X, Gerrard W, Wang XD (1998) The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci USA 95:8461–8466

    Article  PubMed  CAS  Google Scholar 

  • Mac Lellan WR, Schneider MD (1997) Death by design. Circ Res 81:137–144

    CAS  Google Scholar 

  • Mahaffey KR, Clickner RP, Bodurow CC (2004) Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ Health Perspect 112:562–570

    PubMed  CAS  Google Scholar 

  • Malich G, Markovich B, Winder C (1998) Human cell line toxicity of binary and ternary chemical mixtures in comparison to individual toxic effects of their components. Arch Environ Contam Toxicol 35:370–376

    Article  PubMed  CAS  Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis-an overview of cell death. Am J Pathol 146:3–15

    PubMed  CAS  Google Scholar 

  • Martin MD, Williams BJ, Charleston JD, Oda D (1997) Spontaneous exfoliation of teeth following severe elemental mercury poisoning: case report and histological investigation for mechanism. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 84:495–501

    Article  PubMed  CAS  Google Scholar 

  • Mazzaoui SA, Burrow MF, Tyas MJ (2002) Long-term quantification of the release of monomers from dental resin composites and a resin-modified glass ionomer cement. J Biomed Mater Res 63:299–305

    Article  PubMed  CAS  Google Scholar 

  • Ott KHR (1984) Zur Quecksilberbelastung durch Amalgamfüllungen. Dtsch Zahnärztl Z 39:199–205

    PubMed  CAS  Google Scholar 

  • Raffray M, Cohen GM (1997) Apoptosis and necrosis in toxicology: a continuum or distinct modes of cell death?. Pharmacol Ther 75:153–177

    Article  PubMed  CAS  Google Scholar 

  • Ratanasathien S, Wataha JC, Hanks CT, Dennison JB (1995) Cytotoxic interactive effects of dentin bonding components on mouse fibroblasts. J Dent Res 74:1602–1606

    Article  PubMed  CAS  Google Scholar 

  • Rathburn MA, Craig RG, Hanks CT, Filisko FE (1991) Cytotoxicity of a Bis-GMA dental composite before and after leaching in organic solvents. J Biomed Mater Res 25:443–457

    Article  Google Scholar 

  • Reichl FX (2003) Toxikologie zahnärztlicher Restaurationsmaterialien. Zahnärztl Mitt 93:834–840

    Google Scholar 

  • Sadoh DR, Sharief MK, Howard Rs (1999) Occupational exposure to methyl methacrylate monomer induces generalised neuropathy in a dental technician. Br Dent J 24:380–381

    Article  Google Scholar 

  • Sanfeliu C, Sebastia J, Cristofol R, Rodriguez-Farre E (2003) Neurotoxicity of organomercurial compounds. Neurotox Res 5:283–305

    PubMed  Google Scholar 

  • Sanwal V, Pandya M, Bhaskaran M, Franki N, Reddy K, Ding G, Kapasi A, Valderrama E, Singhal PC (2001) Puromycin aminonucleoside induces glomerular epithelial cell apoptosis. Exp Mol Pathol 70:54–64

    Article  PubMed  CAS  Google Scholar 

  • Savill J, Fadok V, Henson P, Haslett C (1993) Phagocyte recognition of cells undergoing apoptosis. Immunol Today 14:131–136

    Article  PubMed  CAS  Google Scholar 

  • Schuster G, Lefebvre C, Wataha J, White S (1996) Biocompatibility of posterior restorative materials. CDA J 24:17–31

    CAS  Google Scholar 

  • Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Curren MJ, Seniff D, Boyd MR (1988) Evaluation of a soluble tetrazolium formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48:4827–4833

    PubMed  CAS  Google Scholar 

  • Soderholm KJ, Mariotti A (1999) BIS-GMA–based resins in dentistry: are they safe?. J Am Dent Assoc 130:201–219

    PubMed  CAS  Google Scholar 

  • Spahl W, Budzikiewicz H, Geurtsen W (1998) Determination of leachable components from four commercial dental composites by gas and liquid chromatography mass spectrometry. J Dent 26:137–145

    Article  PubMed  CAS  Google Scholar 

  • Stanley HR (1993) Effects of dental restorative materials - local and systemic responses reviewed. J Am Dent Assoc 124:76–80

    PubMed  CAS  Google Scholar 

  • Terakado M, Yamazaki M, Tsujimoto Y, Kawashima T, Nagashima K, Ogawa J, Fujita Y, Sugiya T, Sakai T, Furuyama S (1984) Lipid peroxidation as a possible cause of benzoyl peroxide toxicity in rabbit dental pulp — a microsomal lipid peroxidation in vitro. J Dent Res 63:901–905

    PubMed  CAS  Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Van Miller JP, Garman RH, Hermansky SJ, Mirsalis JC, Frederick CB (2003) Skin irritation, basal epithelial cell proliferation, and carcinogenicity evaluations of a representative specialty acrylate and methacrylate. Regul Toxicol Pharmacol 37:54–65

    Article  PubMed  CAS  Google Scholar 

  • Viarengo A, Nicotera P (1991) Possible role of Ca2+ in heavy metal cytotoxicity. Comp Biochem Physiol C 100:81–84

    Article  PubMed  CAS  Google Scholar 

  • Wan QC, Rumpf D, Schricker SR, Mariotti A, Culbertson BM (2001) Influence of hyperbranched multi-methacrylates for dental near resins on proliferation of human gingival fibroblasts. Biomacromolecules 2:217–222

    Article  PubMed  CAS  Google Scholar 

  • Wild LG, Ortega HG, Lopez M (1997) Immune system alteration in the rat after indirect exposure to methyl mercury chloride or methyl mercury sulfide. Environ Res 74:34–42

    Article  PubMed  CAS  Google Scholar 

  • Witte Y, Frahmann E, Jacobi H (1995) Comparison of the sensitivity of three toxicity tests determining survival, inhibition of growth and colony-forming ability in human fibroblasts after incubation with environmental chemicals. Toxicol In Vitro 9:327–351

    Article  CAS  Google Scholar 

  • Zalups RK, Aslamkhan AG, Ahmad S (2004) Human organic anion transporter 1 mediates cellular uptake of cysteine-S conjugates of inorganic mercury. Kidney Int 66:251–261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the technical assistance of Sabine Domes and Stefan Schulz. This work has been supported by the Deutsche Forschungsgemeinschaft, DFG, Germany; number RE 633/2/1-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz-Xaver Reichl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichl, FX., Esters, M., Simon, S. et al. Cell death effects of resin-based dental material compounds and mercurials in human gingival fibroblasts. Arch Toxicol 80, 370–377 (2006). https://doi.org/10.1007/s00204-005-0044-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-005-0044-2

Keywords

Navigation